Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3836–3846 | Cite as

Magnetism and Hyperfine Parameters in Iron Rich \(\hbox {Gd}_2\hbox {Fe}_{17-x}\hbox {Si}_x\) Intermetallics

  • K. Nouri
  • T. Bartoli
  • A. Chrobak
  • J. Moscovici
  • L. Bessais
Article
  • 22 Downloads

Abstract

\(\hbox {Gd}_2\hbox {Fe}_{17-x}\hbox {Si}_x\) (\(x = 0.25\), 0.5 and 1) samples were synthesized by arc melting and annealed at 1073 K for 1 week. X-ray diffraction analysis by the Rietveld method has shown that these materials crystallize in the rhombohedral \(\hbox {Th}_2\hbox {Zn}_{17}\)-type structure (space group \(R\bar{3}m\)). The Curie temperature increases with Si content x, whereas the unit-cell parameters decrease slightly. The temperature dependence of magnetization data revealed that \(\hbox {Gd}_2\hbox {Fe}_{17-x}\hbox {Si}_x\) exhibits a second-order ferromagnetic to paramagnetic phase transition in the vicinity of the Curie temperature. Exchange coupling parameters of RR, MM and RM (R—rare earth, M—transition metal) have been determined from M(T) magnetization curves based on the mean field theory calculation. The magnetic entropy change \(\Delta S_\mathrm{M}\) and the relative cooling power were estimated from isothermal magnetization curves for all samples. In the proximity of \({T}_\mathrm{C}\) and in an applied field of 1.56 T, \(\Delta S_\mathrm{M}\) reached a maximum values of 1.38, 1.67 and 3.07 J/kg K for x = 0.25, 0.5 and 1, respectively. We have calculated the magnetic moment per Fe atom from magnetization measurements at 293 K up to 17 kOe, and it decreases with Si content. These results are verified by the Mössbauer spectrometry measurements obtained at the same temperature. The Mössbauer spectra analysis is based on the correlation between the Wigner–Seitz volume and the isomer-shift evolution of each specific site 6c, 9d, 18f, and 18h of the \(R\bar{3}\)m structure. For all Si concentrations, the magnitude of the hyperfine fields are \({H_{\rm HF}}\{6c\} > {H_{\rm HF}}\{9d\} > {H_{\rm HF}}\{18f\} > {H_{\rm HF}}\{18h\}\). The mean hyperfine field decreases with the Si content.

Keywords

Rare earth alloys and compounds magnetization Mössbauer spectrometry magnetocaloric effect (MCE) mean field theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This paper within the frame work of collaboration is supported by the Tunisian Ministry of Higher Education and Scientific Research and Technology and the Higher Education, Scientific of French (PHC MAGHREB project 15MAG07). This work was partially supported by National Science Centre in Poland by the Grant 2015/19/B/ST8/02636.

References

  1. 1.
    R. Guetari, R. Bez, C.B. Cizmas, N. Mliki, L. Bessais, J. Alloys Compd. 579, 156 (2013).CrossRefGoogle Scholar
  2. 2.
    R. Grossinger, R. Sato, J. Magn. Magn. Mater. 294, 91 (2005).CrossRefGoogle Scholar
  3. 3.
    R. Guetari, R. Bez, A. Belhadj, K. Zehani, A. Bezergheanu, N. Mliki, L. Bessais, C.B. Cizmas, J. Alloys Compd. 588, 64 (2014).CrossRefGoogle Scholar
  4. 4.
    L. Bessais, E. Dorolti, C. Djega-Mariadassou, J. Appl. Phys. 97, 013902 (2005a).CrossRefGoogle Scholar
  5. 5.
    L. Bessais, K. Younsi, S. Khazzan, N. Mliki, Intermetallics 19, 997 (2011).CrossRefGoogle Scholar
  6. 6.
    K.H.J. Buschow, Rep. Prog. Phys. 54, 1123 (1991).CrossRefGoogle Scholar
  7. 7.
    L. Bessais, C. Djega-Mariadassou, A. Nandra, M.D. Appay, E. Burzo, Phys. Rev. B 69, 64402 (2004a).CrossRefGoogle Scholar
  8. 8.
    L. Bessais, E. Dorolti, C. Djega-Mariadassou, Appl. Phys. Lett. 87, 192503 (2005b).CrossRefGoogle Scholar
  9. 9.
    S. Khazzan, N. Mliki, L. Bessais, C. Djega-Mariadassou, J. Magn. Magn. Mater. 322, 224 (2010).CrossRefGoogle Scholar
  10. 10.
    A.E. Ray, K.J. Strnat, I.E.E.E. Trans, Magn. 11, 1429 (1975).CrossRefGoogle Scholar
  11. 11.
    K.H.J. Buschow, Rep. Prog. Phy. 40, 1179 (1977).CrossRefGoogle Scholar
  12. 12.
    B.P. Hu, S.G. Zhong, 35, 352 (1986).Google Scholar
  13. 13.
    Z. Hu, W.B. Yelon, S. Mishra, G.J. Long, O.A. Pringle, D.P. Middleton, K.H.J. Buschow, F. Grandjean, J. Appl. Phys. 76, 443 (1994).CrossRefGoogle Scholar
  14. 14.
    K. Mandal, A. Yan, P. Kershl, A. Handstein, O. Gutfleisch, K.-H. Muller, J. Phys. D 37, 2628 (2004).CrossRefGoogle Scholar
  15. 15.
    S. Charfeddine, K. Zehani, L. Bessais, A. Korchef, J. Solid State Chem. 238, 15 (2016).CrossRefGoogle Scholar
  16. 16.
    M. Phejar, V. Paul-Bancour, L. Bessais, Intermetallics 18, 2301 (2010).CrossRefGoogle Scholar
  17. 17.
    V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997).CrossRefGoogle Scholar
  18. 18.
    H.C.Y. Zhang, J. Han, H. Du, C. Wang, Y. Yang, J. Magn. Magn. Mater. 320, 1382 (2008).CrossRefGoogle Scholar
  19. 19.
    L. Bessais, S. Sab, C. Djega-Mariadassou, N.H. Dan, N.X. Phuc, Phys. Rev. B 70, 134401 (2004b).CrossRefGoogle Scholar
  20. 20.
    C. Djega-Mariadassou, L. Bessais, A. Nandra, E. Burzo, Phys. Rev. B 68, 24406 (2003).CrossRefGoogle Scholar
  21. 21.
    K. Younsi, V. Russier, L. Bessais, J. Appl. Phys. 107, 083916 (2010).CrossRefGoogle Scholar
  22. 22.
    A. Chrobak, A. Bajorek, G. Chełkowska, Acta Phys. Pol. A 121, 1132 (2012).CrossRefGoogle Scholar
  23. 23.
    R.F. Sabirianov, S.S. Jaswal, J. Appl. Phys. 79, 5942 (1996).CrossRefGoogle Scholar
  24. 24.
    W.B. Yelon, Z. Hu, W.J. James, G.K. Marasinghe, J. Appl. Phys. 79, 5939 (1996).CrossRefGoogle Scholar
  25. 25.
    C. Lin, Y. Sun, Z. Liu, H. Jiang, J. Yang, B. Zhang, Y. Deng, Solid State Comm. 81, 299 (1992).CrossRefGoogle Scholar
  26. 26.
    Z. Li, X.Z. Zhow, A.H. Morrish, Phys. Rev. B 51, 2891 (1995).CrossRefGoogle Scholar
  27. 27.
    D. Middleton, S. Mishra, G. Long, O. Pringle, Z. Hu, W. Yelon, F. Grandjean, K. Buschow, J. Appl. Phys. 78(9), 5568 (1995).CrossRefGoogle Scholar
  28. 28.
    C. Djega-Mariadassou, L. Bessais, A. Nandra, J.M. Greneche, E. Burzo, Phys. Rev. B 65, 14419 (2001).CrossRefGoogle Scholar
  29. 29.
    Givord D, Lemaire R (1974) IEEE Trans. Magn. 10:109.CrossRefGoogle Scholar
  30. 30.
    M.S.S. Brooks, L. Nordstrom, B. Johansson, J. Phys. Condens. Matter 3, 2357 (1991). http://stacks.iop.org/0953-8984/3/i=14/a=015
  31. 31.
    T. Jacobs, K.H.J. Buschow, G.F. Zhou, X. Li, F.R. de Boer, J. Magn. Magn. Mater. 116, 220 (1992).CrossRefGoogle Scholar
  32. 32.
    X.C. Kou, R. Grössinger, G. Wiesinger, J.P. Liu, F.R. de Boer, I. Kleinschroth, H. Kronmüller, Phys. Rev. B 51, 8254 (1995).CrossRefGoogle Scholar
  33. 33.
    Z.W. Li, A.H. Morrish, Phys. Rev. B 55, 3670 (1997).CrossRefGoogle Scholar
  34. 34.
    N. Plugaru, J. Rubín, J. Bartolomé, C. Piquer, M. Artigas, Phys. Rev. B 65, 134419 (2002).CrossRefGoogle Scholar
  35. 35.
    Buschow K, de Boer F (2003) Physics of Magnetism and Magnetic Materials. Kluwer, Dordrecht.CrossRefGoogle Scholar
  36. 36.
    M. Huang, W. Ching, Z. Gu, J. Appl. Phys. 81, 5112 (1997).CrossRefGoogle Scholar
  37. 37.
    A. Hassini, H. Lassri, A. Bouhdada, M. Ayadi, R. Krishnan, I. Mansouri, B. Chaker, Physica B 275, 295 (2000).CrossRefGoogle Scholar
  38. 38.
    L. Néel, J. Phys. Radium 9, 148 (1948).Google Scholar
  39. 39.
    A. Bajorek, A. Chrobak, G. Chelkowska, K. Ociepka, J. Magn. Magn. Mater. 395, 221 (2015).CrossRefGoogle Scholar
  40. 40.
    A.M. Tishin, Y.I. Spichkin, The magnetocaloric effect and its applications (Bristol, 2003)Google Scholar
  41. 41.
    M. Foldeaki, R. Chahine, T.K. Bose, J. Appl. Phys. 77, 3528 (1995).CrossRefGoogle Scholar
  42. 42.
    J. Shen, J. Wu, J. Sun, J. Appl. Phys. 106, 083902 (2009).CrossRefGoogle Scholar
  43. 43.
    V.K. Pecharsky, K.A. Gschneidner, J. Appl. Phys. 86, 565 (1999).CrossRefGoogle Scholar
  44. 44.
    J. Inoue, M. Shimizu, J. Phys. F 12, 1811 (1982).CrossRefGoogle Scholar
  45. 45.
    P. Brommer, Physica B 154, 197 (1989).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • K. Nouri
    • 1
    • 2
  • T. Bartoli
    • 1
  • A. Chrobak
    • 3
    • 4
  • J. Moscovici
    • 1
  • L. Bessais
    • 1
  1. 1.ICMPE, (UMR7182), CNRS-UPECUniversité Paris EstThiaisFrance
  2. 2.Laboratoire des Sciences des Matériaux et de l’Environnement, Faculté des Sciences de SfaxUniversité de SfaxSfaxTunisia
  3. 3.A. Chełkowski Institute of PhysicsUniversity of SilesiaKatowicePoland
  4. 4.Silesian Center for Education and Interdisciplinary ResearchUniversity of SilesiaChorzowPoland

Personalised recommendations