Advertisement

Journal of Electronic Materials

, Volume 47, Issue 9, pp 5007–5012 | Cite as

Observation of Threading Dislocations in Ammonothermal Gallium Nitride Single Crystal Using Synchrotron X-ray Topography

  • Y. Yao
  • Y. Ishikawa
  • Y. Sugawara
  • Y. Takahashi
  • K. Hirano
Topical Collection: 17th Conference on Defects (DRIP XVII)
Part of the following topical collections:
  1. 17th Conference on Defects-Recognition, Imaging and Physics in Semiconductors (DRIP XVII)

Abstract

Synchrotron monochromatic-beam x-ray topography observation has been performed on high-quality ammonothermal gallium nitride single crystal to evaluate threading dislocations (TD) in a nondestructive manner. Asymmetric diffractions with six equivalent g-vectors of 11–26, in addition to a symmetric diffraction with g = 0008, were applied to determine the Burgers vectors (b) of dislocations. It was found that pure edge-type TDs with \( {\varvec b} = \left\langle {11 - 20} \right\rangle /3 \) did not exist in the sample. A dominant proportion of TDs were of mixed type with \( {\varvec b} = \left\langle {11 - 20} \right\rangle /3 + \left\langle {0001} \right\rangle \), i.e., so-called c + a dislocations. Pure 1c screw dislocations with \( {\varvec b} = \left\langle {0001} \right\rangle \) and TDs with c-component larger than 1c were also observed.

Keywords

GaN ammonothermal dislocation synchrotron x-ray topography Burgers vector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I.C. Kizilyalli, A.P. Edwards, O. Aktas, T. Prunty, and D. Bour, IEEE Trans. Electron Dev. 62, 414 (2015).CrossRefGoogle Scholar
  2. 2.
    T. Oka, T. Ina, Y. Ueno, and J. Nishii, Appl. Phys. Express 8, 054101 (2015).CrossRefGoogle Scholar
  3. 3.
    T. Kachi and T. Uesugi, Sensor Mater. 25, 219 (2013).Google Scholar
  4. 4.
    K. Yamane, M. Ueno, H. Furuya, N. Okada, and K. Tadatomo, J. Cryst. Growth 358, 1 (2012).CrossRefGoogle Scholar
  5. 5.
    Y. Yao, Y. Ishikawa, Y. Sugawara, D. Yokoe, M. Sudo, N. Okada, and K. Tadatomo, Superlattice Microst. 99, 83 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Sintonen, S. Suihkonen, H. Jussila, A. Danilewsky, R. Stankiewicz, T.O. Tuomi, and H. Lipsanen, Appl. Phys. Express 7, 091003 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Sintonen, S. Suihkonen, H. Jussila, H. Lipsanen, T.O. Tuomi, E. Letts, S. Hoff, and T. Hashimoto, J. Cryst. Growth 406, 72 (2014).CrossRefGoogle Scholar
  8. 8.
    S. Sintonen, M. Rudziński, S. Suihkonen, H. Jussila, M. Knetzger, E. Meissner, A. Danilewsky, T.O. Tuomi, and H. Lipsanen, J. Appl. Phys. 116, 083504 (2014).CrossRefGoogle Scholar
  9. 9.
    N.A. Mahadik, S.B. Qadri, and J.A. Freitas Jr, Cryst. Growth Des. 15, 291 (2015).CrossRefGoogle Scholar
  10. 10.
    M. Dudley, Y. Chen, X.R. Huang, and R. Ma, Mater. Sci. Forum 600–603, 261 (2009).Google Scholar
  11. 11.
    Y. Chen, X.R. Huang, G. Dhanaraj, M. Dudley, E.K. Sanchez, and M.F. MacMillan, Mater. Sci. Forum 600–603, 297 (2009).Google Scholar
  12. 12.
    F. Wu, M. Dudley, H. Wang, S. Byrappa, S. Sun, B. Raghothamachar, E.K. Sanchez, G. Chung, D. Hansen, S.G. Mueller, and M.J. Loboda, Mater. Sci. Forum 740–742, 217 (2013).CrossRefGoogle Scholar
  13. 13.
    I. Kamata, M. Nagano, H. Tsuchida, Y. Chen, and M. Dudley, Mater. Sci. Forum 600–603, 305 (2009).Google Scholar
  14. 14.
    K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).CrossRefGoogle Scholar
  15. 15.
    Y. Yao, Y. Ishikawa, Y. Sugawara, Y. Takahashi, and K. Hirano, Mater. Sci. Forum 897, 185 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Y. Yao
    • 1
  • Y. Ishikawa
    • 1
  • Y. Sugawara
    • 1
  • Y. Takahashi
    • 2
  • K. Hirano
    • 2
  1. 1.Japan Fine Ceramics Center (JFCC)NagoyaJapan
  2. 2.High Energy Accelerator Research Organization (KEK)TsukubaJapan

Personalised recommendations