Ferromagnetic Phase Stability, Magnetic, Electronic, Elasto-Mechanical and Thermodynamic Properties of BaCmO3 Perovskite Oxide

  • Sajad Ahmad Dar
  • Vipul Srivastava
  • Umesh Kumar Sakalle
  • Vanshree Parey
Article
  • 15 Downloads

Abstract

The structural, electronic, elasto-mechanical and thermodynamic properties of cubic ABO3 perovskites BaCmO3 has been successfully calculated within density functional theory via full potential linearized augmented plane wave. The structural study divulges ferromagnetic stability for the compound. For the precise calculation of electronic and magnetic properties a generalized gradient approximation (GGA), and a Hubbard approximation (GGA + U), (modified Becke Johnson approximation) mBJ have been incorporated. The electronic study portrays the half-metallic nature for the compound in all the approximations. The calculated magnetic moment with different approximations was found to be large and with an integer value of 6 μb, this integer value of magnetic moment also proves the half-metallic nature for BaCmO3. The calculated elastic constants have been used to predict mechanical properties like the Young modulus (Y), the Shear modulus (G) and the Poisson ratio (ν). The calculated B/G and Cauchy pressure (C12-C44) present the brittle nature for BaCmO3. The thermodynamic parameters like heat capacity, thermal expansion, and Debye temperature have been calculated and examined in the temperature range of 0 K to 700 K and pressure between 0 GPa and 40 GPa. The melting temperature was also calculated and was found to be 1847 ± 300 K.

Keywords

BaCmO3 DFT half-metallic and ferromagnetic thermodynamics: elastic and mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2018_6251_MOESM1_ESM.pdf (780 kb)
Supplementary material 1 (PDF 781 kb)

References

  1. 1.
    M. Imada, A. Fujimori, and Y. Tokura, Mod. Phys. 70, 1039 (1998).CrossRefGoogle Scholar
  2. 2.
    F.S. Hickernell, IEEE Trans. Ultrason. 52, 737 (2005).Google Scholar
  3. 3.
    P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).CrossRefGoogle Scholar
  4. 4.
    A.J. Millis, B.I. Shraiman, and R. Muller, Phys. Rev. Lett. 77, 175 (1996).CrossRefGoogle Scholar
  5. 5.
    Y. Tokura, eds., Advances in condensed matter science, Vol. 2 (The Netherlands: Gordan and Breach, 2000).Google Scholar
  6. 6.
    M. Bibes and A. Barthélémy, Nat. Mater. 7, 425 (2008).CrossRefGoogle Scholar
  7. 7.
    N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, and P. Ghosez, Nat. Commun. 6, 6677 (2015).CrossRefGoogle Scholar
  8. 8.
    J.F. Scott, Nat. Mater. 6, 256 (2007).CrossRefGoogle Scholar
  9. 9.
    Y. Tokura and N. Nagaosa, Science 288, 462 (2000).CrossRefGoogle Scholar
  10. 10.
    S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Supercond. Nov. Magn. 30, 3055 (2017).CrossRefGoogle Scholar
  11. 11.
    S.A. Dar, V. Srivastava, U.K. Sakalle, S.A. Khandy, and D.C. Gupta, J. Supercond. Nov. Magn. 31, 141 (2018).CrossRefGoogle Scholar
  12. 12.
    S.A. Dar, V. Srivastava, U.K. Sakalle, and G. Pagare, J. Supercond. Nov. Magn. (2018).  https://doi.org/10.1007/s10948-018-4574-2.
  13. 13.
    S.A. Dar, V. Srivastava, U.K. Sakalle, A. Rashid, and G. Pagare, Mater. Res. Express 5, 026106 (2018).CrossRefGoogle Scholar
  14. 14.
    Z. Ali, I. Ahmad, B. Amin, J. Maqsood, A. Afaq, M. Maqbool, I. Khan, and M. Zahid, Opt. Mat. 33, 553 (2011).CrossRefGoogle Scholar
  15. 15.
    Z. Ali, I. Ahmad, and A.H. Reshak, Phys. B 410, 217 (2013).CrossRefGoogle Scholar
  16. 16.
    B. Sahli, H. Bouafia, B. Abidri, A. Abdellaoui, S. Hiadsi, A. Akriche, N. Benkhettou, and D. Rached, J Alloys Compd. 635, 163 (2015).CrossRefGoogle Scholar
  17. 17.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kuasnicke, and J. Luitz, Introduction to WIEN2 K, An Augmented plane wave plus local orbitals program for calculating crystal properties (Vienna: Vienna University of Technology, 2001).Google Scholar
  18. 18.
    K. Schwarz, P. Blaha, and G.K.H. Madsen, Comp. Phys. Commun. 147, 71 (2002).CrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  20. 20.
    S.A. Dar, S.A. Khandy, I. Islam, D.C. Gupta, U.K. Sakalle, V. Srivastava, and K. Parray, Chin. J. Phys. 55, 1769 (2017).CrossRefGoogle Scholar
  21. 21.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).CrossRefGoogle Scholar
  22. 22.
    K. Tanaka, I. Sato, T. Hirosawa, K. Kurosaki, H. Muta, and S. Yamanaka, J. Nucl. Mater. 422, 163 (2012).CrossRefGoogle Scholar
  23. 23.
    K. Tanaka, I. Sato, T. Hirosawa, K. Kurosaki, H. Muta, and S. Yamanaka, J. Nucl. Mater. 414, 316 (2011).CrossRefGoogle Scholar
  24. 24.
    M.A. Blanco, A.M. Pendas, and E.J. Francisco, J. Mol. Struct. Theochem. 268, 245 (1996).CrossRefGoogle Scholar
  25. 25.
    A. Otero-de-la-Roza, D. Abbasi-Pérez, and V. Luaña, Comput. Phys. Commun. 182, 2232 (2011).CrossRefGoogle Scholar
  26. 26.
    A. Otero-de-la-Roza and V. Luaña, Phys. Rev. B 84, 184103 (2011).CrossRefGoogle Scholar
  27. 27.
    Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).CrossRefGoogle Scholar
  28. 28.
    A.G. Petukhov and I.I. Mazin, Phys. Rev. B 67, 153106 (2003).CrossRefGoogle Scholar
  29. 29.
    P. Novak, J. Kunes, L. Chaput, and W.E. Pickett, Phys. Status Solidi B 243, 563 (2006).CrossRefGoogle Scholar
  30. 30.
    V.I. Aisimov, I.V. Solovye, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
  31. 31.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  32. 32.
    T. Charpin, A Package for Calculating elastic tensors of cubic phases using WIEN: Laboratory of Geometrix F-75252 (Paris, France) (2001).Google Scholar
  33. 33.
    F. Birch, J. Appl. Phys. 9, 279 (1938).CrossRefGoogle Scholar
  34. 34.
    J. Fuger, R.G. Haire, and J.R. Peterson, J. Alloys Compd. 200, 181 (1993).CrossRefGoogle Scholar
  35. 35.
    R. Ubic, J. Am. Ceram. Soc. 90, 3326 (2007).CrossRefGoogle Scholar
  36. 36.
    R.D. Shannon, Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976).Google Scholar
  37. 37.
    J.B. Goodenogh, Rep. Prog. Phys. 67, 1915 (2004).CrossRefGoogle Scholar
  38. 38.
    L.E. Russel, D.L. Harrison, and N.H. Brett, J. Nucl. Mater. 2, 310 (1960).CrossRefGoogle Scholar
  39. 39.
    N. Xu, H. Zhao, X. Zhou, W. Wei, X. Lu, W. Ding, and F. Li, Int. J. Hydrog. Energy 35, 7295 (2010).CrossRefGoogle Scholar
  40. 40.
    P.L. Yan, J.M. Zhang, B. Zhou, and K.W. Xu, J. Phys. D:Appl. Phys. 49, 255002 (2016).CrossRefGoogle Scholar
  41. 41.
    S.A. Dar, V. Srivastava, and U.K. Sakalle, Mater. Res. Express 4, 086304 (2017).CrossRefGoogle Scholar
  42. 42.
    S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Electron. Mater. 46, 6870 (2017).CrossRefGoogle Scholar
  43. 43.
    G.V. Sinko and N.A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002).CrossRefGoogle Scholar
  44. 44.
    R. Hill, Proc. Phy. Soc. London 65, 349 (1952).CrossRefGoogle Scholar
  45. 45.
    A. Reuss and Z. Angew, Mater. Phys. 9, 49 (1929).Google Scholar
  46. 46.
    V. Tvergaard and J.W. Hirtchinson, J. Am. Ceram. Soc. 71, 157 (1988).CrossRefGoogle Scholar
  47. 47.
    D.G. Pertifor, Mater. Sci. Technol. 8, 345 (1992).CrossRefGoogle Scholar
  48. 48.
    J. Haines, J.M. Leger, and G. Bocquillon, Ann. Rev. Mater. Sci. 31, 1 (2001).CrossRefGoogle Scholar
  49. 49.
    S.F. Pugh, Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
  50. 50.
    E. Schreiber, O.L. Anderson, and N. Soga, Elastic constants and measurements (New York: M.C Graw Hill, 1973).Google Scholar
  51. 51.
    K. Bencherif, A. Yakoubi, N. Della, O.M. Abid, H. Khachai, and R. Ahmad, et al., J. Electr. Mater. 45, 3479 (2016).CrossRefGoogle Scholar
  52. 52.
    L. Quiang, H. Duo-Hui, C. Qi-Long, and W. Fan-Hou, Chin. Phys. B 22, 037101 (2013).CrossRefGoogle Scholar
  53. 53.
    A.T. Petit and P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Sajad Ahmad Dar
    • 1
  • Vipul Srivastava
    • 2
  • Umesh Kumar Sakalle
    • 3
  • Vanshree Parey
    • 4
  1. 1.Department of PhysicsGovt. Motilal Vigyan Mahavidyalya CollegeBhopalIndia
  2. 2.Department of PhysicsNRI Institute of Research & TechnologyBhopalIndia
  3. 3.Department of PhysicsS. N. P. G. CollegeKhandwaIndia
  4. 4.Department of PhysicsBarkatullah UniversityBhopalIndia

Personalised recommendations