Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3795–3799 | Cite as

Analytical Study on the Saturated Polarization Under Electric Field and Phase Equilibrium of Three-Phase Polycrystalline Ferroelectrics by Using the Generalized Inverse-Pole-Figure Model

  • Kyong-Sik Ju
  • Hyok-Su Ryo
  • Sung-Nam Pak
  • Chang-Su Pak
  • Sung-Guk Ri
  • Dok-Hwan Ri
Article

Abstract

By using the generalized inverse-pole-figure model, the numbers of crystalline particles involved in different domain-switching near the triple tetragonal–rhombohedral–orthorhombic (T–R–O) points of three-phase polycrystalline ferroelectrics have been analytically calculated and domain-switching which can bring out phase transformations has been considered. Through polarization by an electric field, different numbers of crystalline particles can be involved in different phase transformations. According to the phase equilibrium conditions, the phase equilibrium compositions of the three phases coexisting near the T–R–O triple point have been evaluated from the results of the numbers of crystalline particles involved in different phase transformations.

Keywords

Polycrystalline ferroelectrics inverse-pole-figure model phase transformation domain-switching phase equilibrium composition morphotropic phase boundary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Jaffe, R.S. Roth, and S. Marzullo, J. Appl. Phys. 25, 809 (1954).CrossRefGoogle Scholar
  2. 2.
    B. Jaffe, R.S. Roth, and S. Marzullo, J. Res. Natl. Bur. Standars 55, 239 (1955).CrossRefGoogle Scholar
  3. 3.
    X.H. Hao, J.W. Zhai, L.B. Kong, and Z.K. Ku, Prog. Mater. Sci. 63, 1 (2014).CrossRefGoogle Scholar
  4. 4.
    H. Ouchi, K. Nagano, and S. Hasekawa, J. Am. Ceram. Soc. 48, 630 (1965).CrossRefGoogle Scholar
  5. 5.
    H. Ohuchi, S. Tsukamoto, M. Ishii, and H. Hayakawa, J. Eur. Ceram. Soc. 19, 1191 (1999).CrossRefGoogle Scholar
  6. 6.
    H. Ohuchi and M. Nishida, J. Japan Soc. Powder Metall. 40, 687 (1993).CrossRefGoogle Scholar
  7. 7.
    O.A. Demchenko, L.A. Resnitchenko, O.N. Rasumovskaya, A.V. Turik, L.A. Shilkina, and S.I. Dudkina, Tech. Phys. 50, 1170 (2005).CrossRefGoogle Scholar
  8. 8.
    R.S. Solanki, S.K. Mishra, Y. Kuroiwa, C. Moriyoshi, and D. Pandey, Phys. Rev. B 88, 184109 (2013).CrossRefGoogle Scholar
  9. 9.
    H.S. Ryo and I.G. Ryo, Appl. Phys. A Mater. Sci. Proc. 122, 745 (2016).CrossRefGoogle Scholar
  10. 10.
    F.X. Li, Scr. Mater. 59, 677 (2008).CrossRefGoogle Scholar
  11. 11.
    F.X. Li and Y.W. Li, J. Appl. Phys. 105, 124105 (2009).CrossRefGoogle Scholar
  12. 12.
    H.S. Ryo and I.G. Ryo, J. Electroceram 38, 92 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Institute of Advanced ScienceKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea
  2. 2.Faculty of PhysicsKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea
  3. 3.Department of Energy ScienceKim Il Sung UniversityPyongyangDemocratic People’s Republic of Korea

Personalised recommendations