Skip to main content
Log in

Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNT) and carbon nanospheres were successfully synthesized from coconut fibre-activated carbon. The biomass was first carbonized then physically activated, followed by treatment using ethanol vapor at 700°C to 1100°C at 100°C intervals. The effect of synthesis temperature on the formation of the nanomaterials was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrometry, x-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR) and thermogravimetric analysis. SEM analysis revealed that nanospheres were formed at higher temperatures of 1000°C and 1100°C, while lower temperatures of 800°C and 900°C favored the growth of CNT. At 700°C, however, no tubes or spheres were formed. TEM and FTIR were used to observe spectral features, such as the peak positions, intensity and bandwidth, which are linked to some structural properties of the samples investigated. All these observations provided facts on the nanosphere and nanotube dimensions, vibrational modes and the degree of purity of the obtained samples. The TEM results show spheres of diameter in the range 50 nm to 250 nm while the tubes had diameters between 50 nm to 100 nm. XRD analysis reveals the materials synthesized are amorphous in nature with a hexagonal graphite structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. He, H. Li, Y. Liu, H. Huang, Z. Kang, and S.-T. Lee, Colloids Surf. B 87, 326 (2011).

    Article  Google Scholar 

  2. H. Li, X.D. He, Y.Y. Liu, H. Huang, S. Lian, S.T. Lee, and Z.H. Kang, Carbon 49, 605 (2011).

    Article  Google Scholar 

  3. H. Li, X. He, Y. Liu, H. Yu, Z. Kang, and S.-T. Lee, Mater. Res. Bull. 46, 147 (2011).

    Article  Google Scholar 

  4. Z. Ma, H. Ming, H. Huang, Y. Liu, and Z. Kang, New J. Chem. 36, 861 (2012).

    Article  Google Scholar 

  5. J.S. Sagu, U. Wijayantha, K. Gamage, M. Bohm, S. Bohm, and T.K. Rout, Adv. Eng. Mater. 18, 1059 (2016).

    Article  Google Scholar 

  6. Y. Ding, H. Alias, D. Wen, and R.A. Williams, Int. J. Heat Mass Transf. 49, 240 (2006).

    Article  Google Scholar 

  7. P. Estellé, Mater. Lett. 138, 162 (2015).

    Article  Google Scholar 

  8. S. Halelfadl, P. Estellé, B. Aladag, N. Doner, and T. Maré, Int. J. Therm. Sci. 71, 111 (2013).

    Article  Google Scholar 

  9. S. Halelfadl, T. Maré, and P. Estellé, Exp. Therm. Fluid Sci. 53, 104 (2014).

    Article  Google Scholar 

  10. B. Jo and D. Banerjee, Mater. Lett. 122, 212 (2014).

    Article  Google Scholar 

  11. M.-S. Liu, M. Ching-Cheng Lin, I.T. Huang, and C.-C. Wang, Int. Commun. Heat Mass Transf. 32, 1202 (2005).

    Article  Google Scholar 

  12. L. Lu, Z.-H. Liu, and H.-S. Xiao, Sol. Energy 85, 379 (2011).

    Article  Google Scholar 

  13. T. Maré, S. Halelfadl, S. Van Vaerenbergh, and P. Estellé, Int. Commun. Heat Mass Transf. 66, 80 (2015).

    Article  Google Scholar 

  14. R. Sadri, G. Ahmadi, H. Togun, M. Dahari, S.N. Kazi, E. Sadeghinezhad, and N. Zubir, Nanoscale Res. Lett. 9, 151 (2014).

    Article  Google Scholar 

  15. R. Saidur, K.Y. Leong, and H.A. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011).

    Article  Google Scholar 

  16. X.-Q. Wang and A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007).

    Article  Google Scholar 

  17. Y. Wang, F. Su, C.D. Wood, J.Y. Lee, and X.S. Zhao, Ind. Eng. Chem. Res. 47, 2294 (2008).

    Article  Google Scholar 

  18. D. Antiohos, M. Romano, J. Chen, and J.M. Razal, Syntheses and Applications of Carbon Nanotubes and Their Composites, ed. S. Suzuki (Rijeka: InTech, 2013), https://doi.org/10.5772/51784.

    Google Scholar 

  19. L.-M. Peng, Z. Zhang, and S. Wang, Mater. Today 17, 433 (2014).

    Article  Google Scholar 

  20. H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, and C. Pham-Huy, BioMed Res. Int. 2013, 1 (2013).

    Google Scholar 

  21. V. Amenta and K. Aschberger, WIREs Nanomed. Nanobiotechnol. 7, 371 (2015).

    Article  Google Scholar 

  22. W. Shao, P. Arghya, M. Yiyong, L. Rodes, and S. Prakash, Syntheses and Applications of Carbon Nanotubes and Their Composites, ed. S. Suzuki (Rijeka: InTech, 2013), https://doi.org/10.5772/51785.

    Google Scholar 

  23. K. Shi, J. Yan, E. Lester, and T. Wu, Ind. Eng. Chem. Res. 53, 15012 (2014).

    Article  Google Scholar 

  24. J.O. Alves, J.A.S. Tenório, C. Zhuo, and Y.A. Levendis, J. Mater. Res. Technol. 1, 31 (2012).

    Article  Google Scholar 

  25. H.M. Al-Swaidan, A. Ahmad, in 3rd International Conference on Chemical, Biological and Environmental Engineering, (2011), pp. 25–31.

  26. T.A. Hassan, V.K. Rangari, V. Fallon, Y. Farooq, S. Jeelani, in Proceedings of the Nanotechnology Conference, (2010), pp. 278–281.

  27. S.S. Shams, L.S. Zhang, R. Hu, R. Zhang, and J. Zhu, Mater. Lett. 161, 476 (2015).

    Article  Google Scholar 

  28. N.A. Fathy, RSC Adv. 7, 28535 (2017).

    Article  Google Scholar 

  29. P. Gonugunta, S. Vivekanandhan, A.K. Mohanty, and M. Misra, World J. Nano Sci. Eng. 2, 148 (2012).

    Article  Google Scholar 

  30. X.-W. Chen, O. Timpe, S.B.A. Hamid, R. Schlögl, and D.S. Su, Carbon 47, 340 (2009).

    Article  Google Scholar 

  31. I. Abdullahi, N. Sakulchaicharoen, and J.E. Herrera, Diam. Relat. Mater. 41, 84 (2014).

    Article  Google Scholar 

  32. N. Jeong, Y. Seo, and J. Lee, Diam. Relat. Mater. 16, 600 (2007).

    Article  Google Scholar 

  33. M.S. Shamsudin, N.A. Asli, S. Abdullah, S.Y.S. Yahya, and M. Rusop, Adv. Condens. Matter Phys. 2012, 1 (2012).

    Article  Google Scholar 

  34. D. Lopez, I. Abe, and I. Pereyra, Diam. Relat. Mater. 52, 59 (2015).

    Article  Google Scholar 

  35. S.M. Toussi, A. Fakhru’l-Razi, A. Suraya, in IOP Conference Series: Materials Science and Engineering, vol. 17 (IOP Publishing, 2011), p. 012003.

  36. M. Shamsudin, N. Asli, S. Abdullah, S. Yahya, and M. Rusop, Adv. Condens. Matter Phys. 2012, 420619 (2012).

    Article  Google Scholar 

  37. Y. Jiang and C. Lan, Mater. Lett. 157, 269 (2015).

    Article  Google Scholar 

  38. S. Alam, B. Seema, and F.K. Bangash, J. Chem. Soc. Pak. 31, 46 (2009).

    Google Scholar 

  39. G. Allaedini, S.M. Tasirin, and P. Aminayi, J. Alloys Compd. 647, 809 (2015).

    Article  Google Scholar 

  40. O.-K. Park, H.-S. Chae, G.Y. Park, N.-H. You, S. Lee, Y.H. Bang, D. Hui, B.-C. Ku, and J.H. Lee, Compos. B 76, 159 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria A. Adewumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adewumi, G.A., Inambao, F., Eloka-Eboka, . et al. Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth. J. Electron. Mater. 47, 3788–3794 (2018). https://doi.org/10.1007/s11664-018-6248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6248-z

Keywords

Navigation