Journal of Electronic Materials

, Volume 47, Issue 8, pp 4332–4337 | Cite as

Effect of Intense Optical Excitation on Internal Electric Field Evolution in CdTe Gamma-Ray Detectors

  • K. Suzuki
  • Y. Ichinohe
  • S. Seto
Topical Collection: 18th International Conference on II-VI Compounds
Part of the following topical collections:
  1. 18th International Conference on II-VI Compounds and Related Materials


The time-of-flight (TOF) transient currents in radiation detectors made of CdTe and Cd0.9Zn0.1Te (CZT) have been measured at several optical excitation intensities to investigate the effect of drifting carriers on the internal field. Both detectors show so-called space-charge-perturbed (SCP) current under intense optical excitation. A Monte Carlo (MC) simulation combined with an iterative solution of Poisson’s equation is used to reproduce the observed currents under several bias voltages and excitation intensities. The SCP theory describes well the transient current in the CZT detector, whereas injection of holes from the anode and a corresponding reduction of the electron lifetime are further required to describe that in the CdTe detector. We visualize the temporal changes in the charge distribution and internal electric field profiles of both detectors.


Time of flight space-charge perturbation radiation detector Monte Carlo simulation CZT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Prokesch, D.S. Bale, and C. Szeles, IEEE Trans. Nucl. Sci. 57, 2397 (2010).CrossRefGoogle Scholar
  2. 2.
    M. Strassburg, Ch Schroeter, and P. Hackenschmied, J. Instrum. 6, C01055 (2011).CrossRefGoogle Scholar
  3. 3.
    J. Franc, V. Dedic, J. Zazvorka, M. Hakl, R. Grill, and P.J. Sellin, J. Phys. D Appl. Phys. 46, 235306 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Cola and I. Farella, Appl. Phys. Lett. 105, 203501 (2014).CrossRefGoogle Scholar
  5. 5.
    D.J. Gibbons and A.C. Papadakis, J. Phys. Chem. Solids 29, 115 (1968).CrossRefGoogle Scholar
  6. 6.
    A. Many, M. Simhony, S.Z. Weisz, and J. Levinson, J. Phys. Chem. Solids 22, 285 (1961).CrossRefGoogle Scholar
  7. 7.
    K. Suzuki, T. Sawada, and S. Seto, Phys. Status Solidi C 13, 656 (2016).CrossRefGoogle Scholar
  8. 8.
    K. Suzuki, T. Sawada, and K. Imai, IEEE Trans. Nucl. Sci. 58, 1712 (2011).CrossRefGoogle Scholar
  9. 9.
    W.E. Spear, J. Non-Cryst. Solids 1, 197 (1969).CrossRefGoogle Scholar
  10. 10.
    T.J. Pundsack, N.O. Haugen, L.R. Johnstone, C.D. Frisbie, and R.L. Lidberg, Appl. Phys. Lett. 106, 113301 (2015).CrossRefGoogle Scholar
  11. 11.
    K. Suzuki, S. Seto, T. Sawada, and K. Imai, IEEE Trans. Nucl. Sci. 49, 1287 (2002).CrossRefGoogle Scholar
  12. 12.
    A.C. Papadakis, J. Phys. Chem. Solids 28, 641 (1967).CrossRefGoogle Scholar
  13. 13.
    D.S. Bale and C. Szeles, J. Appl. Phys. 107, 114512 (2010).CrossRefGoogle Scholar
  14. 14.
    I. Farella, G. Montagna, A.M. Mancini, and A. Cola, IEEE Trans. Nucl. Sci. 56, 1376 (2009).CrossRefGoogle Scholar
  15. 15.
    R. Grill, E. Belas, J. Franc, M. Bugar, Š. Uxa, P. Moravec, and P. Hoschl, IEEE Trans. Nucl. Sci. 58, 3172 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Hokkaido University of ScienceTeine SapporoJapan
  2. 2.National Institute of Technology, Ishikawa CollegeTsubataJapan

Personalised recommendations