Skip to main content
Log in

Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells

  • Topical Collection: 18th International Conference on II-VI Compounds
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Intermediate band solar cells (IBSCs) are designed to enhance the photovoltaic efficiency significantly over that of a single-junction solar cell as determined by the Shockley–Queisser limit. In this work we present calculations to determine parameters of type-II Zn1−xCdxTe/Zn1−yCdySe quantum dots (QDs) grown on the InP substrate suitable for IBSCs. The calculations are done via the self-consistent variational method, accounting for the disk form of the QDs, presence of the strained ZnSe interfacial layer, and under conditions of a strain-free device structure. We show that to achieve the required parameters relatively thick QDs are required. Barriers must contain Cd concentration in the range of 35–44%, while Cd concentration in QD can vary widely from 0% to 70%, depending on their thickness to achieve the intermediate band energies in the range of 0.50–0.73 eV. It is also shown that the results are weakly dependent on the barrier thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).

    Article  Google Scholar 

  2. G.L. Araújo and A. Martí, Sol. Energy Mater. Sol. Cells 33, 213 (1994).

    Article  Google Scholar 

  3. A. Luque and A. Martí, Phys. Rev. Lett. 78, 5014 (1997).

    Article  Google Scholar 

  4. A. Luque and A. Martí, Adv. Mater. 22, 160 (2010).

    Article  Google Scholar 

  5. A. Luque and A. Martí, Nat. Photonics 5, 137 (2011).

    Article  Google Scholar 

  6. A. Luque, A. Martí, and C. Stanley, Nat. Photonics 6, 146 (2012).

    Article  Google Scholar 

  7. K.A. Sablon, J.W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, Nano Lett. 11, 2311 (2011).

    Article  Google Scholar 

  8. A. Datas, E. Lopez, I. Ramiro, E. Antolin, A. Marti, A. Luque, R. Tamaki, Y. Shoji, T. Sogabe, and Y. Okada, Phys. Rev. Lett. 114, 157701 (2015).

    Article  Google Scholar 

  9. K. Sablon, Y. Li, N. Vagidov, V. Mitin, J.W. Little, H. Hier, and A. Sergeev, Appl. Phys. Lett. 107, 073901 (2015).

    Article  Google Scholar 

  10. Y. Cheng, M. Fukuda, V.R. Whiteside, M.C. Debnath, P.J. Vallely, T.D. Mishima, M.B. Santos, K. Hossain, S. Hatch, H.Y. Liu, and I.R. Sellers, Sol. Energy Mater. Sol. Cells 147, 94 (2016).

    Article  Google Scholar 

  11. A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, C. Farmer, L.J. Caballero, L. Cuadra, and J.L. Balenzategui, Appl. Phys. Lett. 87, 083505 (2005).

    Article  Google Scholar 

  12. A. Martí, E. Antolín, C.R. Stanley, C.D. Farmer, N. López, P. Díaz, E. Cánovas, P.G. Linares, and A. Luque, Phys. Rev. Lett. 97, 247701 (2006).

    Article  Google Scholar 

  13. R.B. Laghumavarapu, A. Moscho, A. Khoshakhlagh, M. El-Emawy, L.F. Lester, and D.L. Huffaker, Appl. Phys. Lett. 90, 173125 (2007).

    Article  Google Scholar 

  14. G. Wei and S.R. Forrest, Nano Lett. 7, 218 (2007).

    Article  Google Scholar 

  15. A. Luque and A. Martí, Electron. Lett. 44, 943 (2008).

    Article  Google Scholar 

  16. N. Ahsan, N. Miyashita, M.M. Islam, K.M. Yu, W. Walukiewicz, and Y. Okada, Appl. Phys. Lett. 100, 172111 (2012).

    Article  Google Scholar 

  17. J. Hwang, K. Lee, A. Teran, S. Forrest, J.D. Phillips, A.J. Martin, and J. Millunchick, Phys. Rev. Appl. 1, 051003 (2014).

    Article  Google Scholar 

  18. K. Sablon, J. Little, N. Vagidov, Y. Li, V. Mitin, and A. Sergeev, Appl. Phys. Lett. 104, 253904 (2014).

    Article  Google Scholar 

  19. A.M. Vega, E. Antolin, P.G. Linares, I. Ramiro, I. Artacho, E. López, E. Hernández, M.J. Mendes, A.V. Mellor, I. Tobías, D.F. Marron, C. Tablero, A.B. Cristóbal, C.G. Bailey, M. Gonzalez, M.K. Yakes, M.P. Lumb, R.J. Walters, and A. Luque, Proc. SPE 8620, 86200J (2013).

    Article  Google Scholar 

  20. A. Marti, L. Cuadra, and A. Luque, IEEE Trans. Electron. Dev. 48, 2394 (2001).

    Article  Google Scholar 

  21. A.M. Kechiantz, L.M. Kocharyan, and H.M. Kechiyants, Nanotechnology 18, 405401 (2007).

    Article  Google Scholar 

  22. P.G. Linares, A. Martí, E. Antolín, C.D. Farmer, í. Ramiro, C.R. Stanley, and A. Luque, Sol. Energy Mater. Sol. Cells 98, 240 (2012).

    Article  Google Scholar 

  23. A. Varghese, M. Yakimov, V. Tokranov, V. Mitin, K. Sablon, A. Sergeev, and S. Oktyabrsky, Nanoscale 8, 7248 (2016).

    Article  Google Scholar 

  24. S. Dhomkar, I.L. Kuskovsky, U. Manna, I.C. Noyan, and M.C. Tamargo, J. Vac. Sci. Technol. B 31, 03C119 (2013).

    Article  Google Scholar 

  25. S. Dhomkar, U. Manna, I.C. Noyan, M.C. Tamargo, and I.L. Kuskovsky, Appl. Phys. Lett. 103, 181905 (2013).

    Article  Google Scholar 

  26. S. Dhomkar, U. Manna, L. Peng, R. Moug, I.C. Noyan, M.C. Tamargo, and I.L. Kuskovsky, Sol. Energy Mater. Sol. Cells 117, 604 (2013).

    Article  Google Scholar 

  27. S. Dhomkar, Growth and Characterization of Type-II Submonolayer ZnCdTe/ZnCdSe Quantum Dot Superlattices for Efficient Intermediate Band Solar Cells (City University of New York (CUNY), CUNY Academic Works), Dissertation (2015).

  28. Y.D. Kim, M.V. Klein, S.F. Ren, Y.C. Chang, H. Luo, N. Samarth, and J.K. Furdyna, Phys. Rev. B 49, 7262 (1994).

    Article  Google Scholar 

  29. I.V. Ponomarev, L.I. Deych, V.A. Shuvayev, and A.A. Lisyansky, Physica E 25, 539 (2005).

    Article  Google Scholar 

  30. S. Dhomkar, H. Ji, B. Roy, V. Deligiannakis, A. Wang, M.C. Tamargo, and I.L. Kuskovsky, J. Cryst. Growth 422, 8 (2015).

    Article  Google Scholar 

  31. S. Dhomkar, N. Vaxelaire, H. Ji, V. Shuvayev, M.C. Tamargo, I.L. Kuskovsky, and I.C. Noyan, Appl. Phys. Lett. 107, 251905 (2015).

    Article  Google Scholar 

  32. A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).

    Article  Google Scholar 

  33. V.D. Jovanović, Z. Ikonić, D. Indjin, P. Harrison, V. Milanović, and R.A. Soref, J. Appl. Phys. 93, 3194 (2003).

    Article  Google Scholar 

  34. K.H. Yoo, J.D. Albrecht, and L.R. Ram-Mohan, Am. J. Phys. 78, 589 (2010).

    Article  Google Scholar 

  35. S.L. Chuang, Physics of Photonic Devices, 2nd ed. (Hoboken: Wiley, 2012), pp. 132–142.

    Google Scholar 

  36. F.S. Hickernell and W.R. Gayton, J. Appl. Phys. 37, 462 (1966).

    Article  Google Scholar 

  37. H.J. Lozykowski and V.K. Shastri, J. Appl. Phys. 69, 3235 (1991).

    Article  Google Scholar 

  38. J.-H. Yang, S. Chen, W.-J. Yin, X.G. Gong, A. Walsh, and S.-H. Wei, Phys. Rev. B. 79, 245202 (2009).

    Article  Google Scholar 

  39. S. Adachi and T. Taguchi, Phys. Rev. B. 43, 9569 (1991).

    Article  Google Scholar 

  40. K. Sato and S. Adachi, J. Appl. Phys. 73, 926 (1993).

    Article  Google Scholar 

  41. W. Faschinger, S. Ferreira, and H. Sitter, Appl. Phys. Lett. 64, 2682 (1994).

    Article  Google Scholar 

  42. E.J. Tyrrell and J.M. Smith, Phys. Rev. B. 84, 165328 (2011).

    Article  Google Scholar 

  43. Y.-H. Li, X.G. Gong, and S.-H. Wei, Phys. Rev. B 73, 245206 (2006).

    Article  Google Scholar 

  44. C.G. Van de Walle, Phys. Rev. B 39, 1871 (1989).

    Article  Google Scholar 

  45. J. Puls, M. Rabe, H.J. Wünsche, and F. Henneberger, Phys. Rev. B 60, R16303 (1999).

    Article  Google Scholar 

  46. S. Kim, B. Fisher, H.-J. Eisler, and M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003).

    Article  Google Scholar 

  47. M.J.S.P. Brasil, M.C. Tamargo, R.E. Nahory, H.L. Gilchrist, and R.J. Martin, Appl. Phys. Lett. 59, 1206 (1991).

    Article  Google Scholar 

  48. N. Muthukumarasamy, S. Jayakumar, M.D. Kannan, and R. Balasundaraprabhu, Sol. Energy 83, 522 (2009).

    Article  Google Scholar 

  49. A. Luque, P.G. Linares, A. Mellor, V. Andreev, and A. Marti, Appl. Phys. Lett. 103, 123901 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Kuskovsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imperato, C.M., Ranepura, G.A., Deych, L.I. et al. Theoretical Determination of Optimal Material Parameters for ZnCdTe/ZnCdSe Quantum Dot Intermediate Band Solar Cells. J. Electron. Mater. 47, 4325–4331 (2018). https://doi.org/10.1007/s11664-018-6241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6241-6

Keywords

Navigation