Advertisement

Journal of Electronic Materials

, Volume 47, Issue 8, pp 4314–4320 | Cite as

Electronic Band Structure of Rhenium Dichalcogenides

  • Surani M. Gunasekera
  • Daniel Wolverson
  • Lewis S. Hart
  • Marcin Mucha-Kruczynski
Open Access
Topical Collection: 18th International Conference on II-VI Compounds
Part of the following topical collections:
  1. 18th International Conference on II-VI Compounds and Related Materials

Abstract

The band structures of bulk transition metal dichalcogenides ReS2 and ReSe2 are presented, showing the complicated nature of interband transitions in these materials, with several close-lying band gaps. Three-dimensional plots of constant energy surfaces in the Brillouin zone at energies near the band extrema are used to show that the valence band maximum and conduction band minimum may not be located at special high symmetry points. We find that both materials are indirect gap materials and that one must be careful to consider the whole Brillouin zone volume in addressing this question.

Keywords

ReSe2 ReS2 rhenium dichalcogenides angle-resolved photoemission band structure 

Notes

Acknowledgements

This work was supported by the Centre for Graphene Science of the Universities of Bath and Exeter and by the Engineering and Physical Sciences Research Council EPSRC (UK) under Grants Nos. EP/G036101, EP/M022188, and EP/P004830; S.M.G. and L.S.H. are supported by the Bath-Bristol Centre for Doctoral Training in Condensed Matter Physics, Grant No. EP/L015544. Associated experimental studies were supported by the award of beam time at the DIAMOND (IO5) and SOLEIL (ANTARES) synchrotron beam lines and by EPSRC Grant No. EP/P004830/1. Computational work was performed on the University of Bath’s High Performance Computing Facility. Data created during this research are freely available from the University of Bath data archive at  https://doi.org/10.15125/bath-00331,  https://doi.org/10.15125/bath-00332.

References

  1. 1.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, PNAS 102, 10451 (2005).CrossRefGoogle Scholar
  2. 2.
    J.A. Wilson and A.D. Yoffe, Adv. Phys. 18, 193 (1969).CrossRefGoogle Scholar
  3. 3.
    J.-W. Jiang, Front. Phys. 10, 287 (2015).CrossRefGoogle Scholar
  4. 4.
    S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Rahman, K. Davey, and S.-Z. Qiao, Adv. Funct. Mater. 27, 1606129 (2017).CrossRefGoogle Scholar
  6. 6.
    H.J. Lamfers, A. Meetsma, G.A. Wiegers, and J.L. deBoer, J. Alloys Compd. 241, 34 (1996).CrossRefGoogle Scholar
  7. 7.
    S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J.Y. Yan, D.F. Ogletree, S. Aloni, J. Ji, S.S. Li, J.B. Li, F.M. Peeters, and J.Q. Wu, Nat. Commun. 5, 3252 (2014).CrossRefGoogle Scholar
  8. 8.
    D. Wolverson, S. Crampin, A.S. Kazemi, A. Ilie, and S.J. Bending, ACS Nano 8, 11154 (2014).CrossRefGoogle Scholar
  9. 9.
    E. Canadell, A. LeBeuze, M.A. El Khalifa, R. Chevrel, and M.H. Whangbo, J. Am. Chem. Soc. 111, 3778 (1989).CrossRefGoogle Scholar
  10. 10.
    M. Gehlmann, I. Aguilera, G. Bihlmayer, S. Nemšák, P. Nagler, P. Gospodarič, G. Zamborlini, M. Eschbach, V. Feyer, F. Kronast, E. Młyńczak, T. Korn, L. Plucinski, C. Schüller, S. Blügel, and C.M. Schneider, Nano Lett. 17, 5187 (2017).CrossRefGoogle Scholar
  11. 11.
    J. L. Webb, L.S. Hart, D. Wolverson, C.Y. Chen, and J. Avila, M.C. Asensio, Phys. Rev. B 96, 115205 (2017).Google Scholar
  12. 12.
    L.S. Hart, J.L. Webb, S. Dale, S.J. Bending, M. Mucha-Kruczynski, D. Wolverson, C.Y. Chen, J. Avila, and M.C. Asensio, Sci. Rep. 7, 5145 (2017).CrossRefGoogle Scholar
  13. 13.
    D. Biswas, A.M. Ganose, R. Yano, J.M. Riley, L. Bawden, O.J. Clark, J. Feng, L. Collins-Mcintyre, M.T. Sajjad, and W. Meevasana, Phys. Rev. B 96, 085205 (2017).CrossRefGoogle Scholar
  14. 14.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Mater. 21, 395502 (2009).CrossRefGoogle Scholar
  15. 15.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  16. 16.
    A. Dal Corso, Comput. Mater. Sci. 95, 337 (2014).CrossRefGoogle Scholar
  17. 17.
    J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  19. 19.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  20. 20.
    J.L. Webb, L.S. Hart, D. Wolverson, C. Chen, J. Avila, and M.C. Asensio, Phys. Rev. B 96, 115205 (2017).CrossRefGoogle Scholar
  21. 21.
    C.H. Ho, Y.S. Huang, P.C. Liao, and K.K. Tiong, J. Phys. Chem. Solids 60, 1797 (1999).CrossRefGoogle Scholar
  22. 22.
    E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, and C.-H. Ho, Nat. Commun. 6, 6991 (2015).CrossRefGoogle Scholar
  23. 23.
    H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, Nano Res. 8, 3651 (2015).CrossRefGoogle Scholar
  24. 24.
    K. Dileep, R. Sahu, S. Sarkar, S.C. Peter, and R. Datta, J. Appl. Phys. 119, 114309 (2016).CrossRefGoogle Scholar
  25. 25.
    W. Wen, Y. Zhu, X. Liu, H.P. Hsu, Z. Fei, Y. Chen, X. Wang, M. Zhang, K.H. Lin, F.S. Huang, Y.P. Wang, Y.S. Huang, C.H. Ho, P.H. Tan, C. Jin, and L. Xie, Small 13, 1603788 (2017).CrossRefGoogle Scholar
  26. 26.
    J.P. Echeverry and I.C. Gerber, Phys. Rev. B 97, 075123 (2018).CrossRefGoogle Scholar
  27. 27.
    A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S.M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, Nano Lett. 17, 3202 (2017).CrossRefGoogle Scholar
  28. 28.
    C.H. Ho, Y.S. Huang, K.K. Tiong, and P.C. Liao, Phys. Rev. B 58, 16130 (1998).CrossRefGoogle Scholar
  29. 29.
    I. Gutierrez-Lezama, B.A. Reddy, N. Ubrig, and A.F. Morpurgo, 2D Mater. 3, 045016 (2016).Google Scholar
  30. 30.
    S.J. Zelewski and R. Kudrawiec, Sci. Rep. 7, 15365 (2017).CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Centre for Nanoscience and Nanotechnology, Department of PhysicsUniversity of BathBathUK

Personalised recommendations