Skip to main content

Electronic Band Structure of Rhenium Dichalcogenides

Abstract

The band structures of bulk transition metal dichalcogenides ReS2 and ReSe2 are presented, showing the complicated nature of interband transitions in these materials, with several close-lying band gaps. Three-dimensional plots of constant energy surfaces in the Brillouin zone at energies near the band extrema are used to show that the valence band maximum and conduction band minimum may not be located at special high symmetry points. We find that both materials are indirect gap materials and that one must be careful to consider the whole Brillouin zone volume in addressing this question.

References

  1. 1.

    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, PNAS 102, 10451 (2005).

    Article  Google Scholar 

  2. 2.

    J.A. Wilson and A.D. Yoffe, Adv. Phys. 18, 193 (1969).

    Article  Google Scholar 

  3. 3.

    J.-W. Jiang, Front. Phys. 10, 287 (2015).

    Article  Google Scholar 

  4. 4.

    S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

    Article  Google Scholar 

  5. 5.

    M. Rahman, K. Davey, and S.-Z. Qiao, Adv. Funct. Mater. 27, 1606129 (2017).

    Article  Google Scholar 

  6. 6.

    H.J. Lamfers, A. Meetsma, G.A. Wiegers, and J.L. deBoer, J. Alloys Compd. 241, 34 (1996).

    Article  Google Scholar 

  7. 7.

    S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J.Y. Yan, D.F. Ogletree, S. Aloni, J. Ji, S.S. Li, J.B. Li, F.M. Peeters, and J.Q. Wu, Nat. Commun. 5, 3252 (2014).

    Article  Google Scholar 

  8. 8.

    D. Wolverson, S. Crampin, A.S. Kazemi, A. Ilie, and S.J. Bending, ACS Nano 8, 11154 (2014).

    Article  Google Scholar 

  9. 9.

    E. Canadell, A. LeBeuze, M.A. El Khalifa, R. Chevrel, and M.H. Whangbo, J. Am. Chem. Soc. 111, 3778 (1989).

    Article  Google Scholar 

  10. 10.

    M. Gehlmann, I. Aguilera, G. Bihlmayer, S. Nemšák, P. Nagler, P. Gospodarič, G. Zamborlini, M. Eschbach, V. Feyer, F. Kronast, E. Młyńczak, T. Korn, L. Plucinski, C. Schüller, S. Blügel, and C.M. Schneider, Nano Lett. 17, 5187 (2017).

    Article  Google Scholar 

  11. 11.

    J. L. Webb, L.S. Hart, D. Wolverson, C.Y. Chen, and J. Avila, M.C. Asensio, Phys. Rev. B 96, 115205 (2017).

  12. 12.

    L.S. Hart, J.L. Webb, S. Dale, S.J. Bending, M. Mucha-Kruczynski, D. Wolverson, C.Y. Chen, J. Avila, and M.C. Asensio, Sci. Rep. 7, 5145 (2017).

    Article  Google Scholar 

  13. 13.

    D. Biswas, A.M. Ganose, R. Yano, J.M. Riley, L. Bawden, O.J. Clark, J. Feng, L. Collins-Mcintyre, M.T. Sajjad, and W. Meevasana, Phys. Rev. B 96, 085205 (2017).

    Article  Google Scholar 

  14. 14.

    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Mater. 21, 395502 (2009).

    Article  Google Scholar 

  15. 15.

    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  16. 16.

    A. Dal Corso, Comput. Mater. Sci. 95, 337 (2014).

    Article  Google Scholar 

  17. 17.

    J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  18. 18.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  19. 19.

    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  20. 20.

    J.L. Webb, L.S. Hart, D. Wolverson, C. Chen, J. Avila, and M.C. Asensio, Phys. Rev. B 96, 115205 (2017).

    Article  Google Scholar 

  21. 21.

    C.H. Ho, Y.S. Huang, P.C. Liao, and K.K. Tiong, J. Phys. Chem. Solids 60, 1797 (1999).

    Article  Google Scholar 

  22. 22.

    E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, and C.-H. Ho, Nat. Commun. 6, 6991 (2015).

    Article  Google Scholar 

  23. 23.

    H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, Nano Res. 8, 3651 (2015).

    Article  Google Scholar 

  24. 24.

    K. Dileep, R. Sahu, S. Sarkar, S.C. Peter, and R. Datta, J. Appl. Phys. 119, 114309 (2016).

    Article  Google Scholar 

  25. 25.

    W. Wen, Y. Zhu, X. Liu, H.P. Hsu, Z. Fei, Y. Chen, X. Wang, M. Zhang, K.H. Lin, F.S. Huang, Y.P. Wang, Y.S. Huang, C.H. Ho, P.H. Tan, C. Jin, and L. Xie, Small 13, 1603788 (2017).

    Article  Google Scholar 

  26. 26.

    J.P. Echeverry and I.C. Gerber, Phys. Rev. B 97, 075123 (2018).

    Article  Google Scholar 

  27. 27.

    A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S.M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, Nano Lett. 17, 3202 (2017).

    Article  Google Scholar 

  28. 28.

    C.H. Ho, Y.S. Huang, K.K. Tiong, and P.C. Liao, Phys. Rev. B 58, 16130 (1998).

    Article  Google Scholar 

  29. 29.

    I. Gutierrez-Lezama, B.A. Reddy, N. Ubrig, and A.F. Morpurgo, 2D Mater. 3, 045016 (2016).

  30. 30.

    S.J. Zelewski and R. Kudrawiec, Sci. Rep. 7, 15365 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre for Graphene Science of the Universities of Bath and Exeter and by the Engineering and Physical Sciences Research Council EPSRC (UK) under Grants Nos. EP/G036101, EP/M022188, and EP/P004830; S.M.G. and L.S.H. are supported by the Bath-Bristol Centre for Doctoral Training in Condensed Matter Physics, Grant No. EP/L015544. Associated experimental studies were supported by the award of beam time at the DIAMOND (IO5) and SOLEIL (ANTARES) synchrotron beam lines and by EPSRC Grant No. EP/P004830/1. Computational work was performed on the University of Bath’s High Performance Computing Facility. Data created during this research are freely available from the University of Bath data archive at https://doi.org/10.15125/bath-00331, https://doi.org/10.15125/bath-00332.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Wolverson.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gunasekera, S.M., Wolverson, D., Hart, L.S. et al. Electronic Band Structure of Rhenium Dichalcogenides. Journal of Elec Materi 47, 4314–4320 (2018). https://doi.org/10.1007/s11664-018-6239-0

Download citation

Keywords

  • ReSe2
  • ReS2
  • rhenium dichalcogenides
  • angle-resolved photoemission
  • band structure