Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of Electronic Materials
  3. Article

Electronic Band Structure of Rhenium Dichalcogenides

  • Topical Collection: 18th International Conference on II-VI Compounds
  • Open Access
  • Published: 22 March 2018
  • volume 47, pages 4314–4320 (2018)
Download PDF

You have full access to this open access article

Journal of Electronic Materials Aims and scope Submit manuscript
Electronic Band Structure of Rhenium Dichalcogenides
Download PDF
  • Surani M. Gunasekera1,
  • Daniel Wolverson  ORCID: orcid.org/0000-0002-5578-60181,
  • Lewis S. Hart1 &
  • …
  • Marcin Mucha-Kruczynski1 
  • 1002 Accesses

  • 14 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

Abstract

The band structures of bulk transition metal dichalcogenides ReS2 and ReSe2 are presented, showing the complicated nature of interband transitions in these materials, with several close-lying band gaps. Three-dimensional plots of constant energy surfaces in the Brillouin zone at energies near the band extrema are used to show that the valence band maximum and conduction band minimum may not be located at special high symmetry points. We find that both materials are indirect gap materials and that one must be careful to consider the whole Brillouin zone volume in addressing this question.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, PNAS 102, 10451 (2005).

    Article  Google Scholar 

  2. J.A. Wilson and A.D. Yoffe, Adv. Phys. 18, 193 (1969).

    Article  Google Scholar 

  3. J.-W. Jiang, Front. Phys. 10, 287 (2015).

    Article  Google Scholar 

  4. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis, Nat. Rev. Mater. 2, 17033 (2017).

    Article  Google Scholar 

  5. M. Rahman, K. Davey, and S.-Z. Qiao, Adv. Funct. Mater. 27, 1606129 (2017).

    Article  Google Scholar 

  6. H.J. Lamfers, A. Meetsma, G.A. Wiegers, and J.L. deBoer, J. Alloys Compd. 241, 34 (1996).

    Article  Google Scholar 

  7. S. Tongay, H. Sahin, C. Ko, A. Luce, W. Fan, K. Liu, J. Zhou, Y.S. Huang, C.H. Ho, J.Y. Yan, D.F. Ogletree, S. Aloni, J. Ji, S.S. Li, J.B. Li, F.M. Peeters, and J.Q. Wu, Nat. Commun. 5, 3252 (2014).

    Article  Google Scholar 

  8. D. Wolverson, S. Crampin, A.S. Kazemi, A. Ilie, and S.J. Bending, ACS Nano 8, 11154 (2014).

    Article  Google Scholar 

  9. E. Canadell, A. LeBeuze, M.A. El Khalifa, R. Chevrel, and M.H. Whangbo, J. Am. Chem. Soc. 111, 3778 (1989).

    Article  Google Scholar 

  10. M. Gehlmann, I. Aguilera, G. Bihlmayer, S. Nemšák, P. Nagler, P. Gospodarič, G. Zamborlini, M. Eschbach, V. Feyer, F. Kronast, E. Młyńczak, T. Korn, L. Plucinski, C. Schüller, S. Blügel, and C.M. Schneider, Nano Lett. 17, 5187 (2017).

    Article  Google Scholar 

  11. J. L. Webb, L.S. Hart, D. Wolverson, C.Y. Chen, and J. Avila, M.C. Asensio, Phys. Rev. B 96, 115205 (2017).

  12. L.S. Hart, J.L. Webb, S. Dale, S.J. Bending, M. Mucha-Kruczynski, D. Wolverson, C.Y. Chen, J. Avila, and M.C. Asensio, Sci. Rep. 7, 5145 (2017).

    Article  Google Scholar 

  13. D. Biswas, A.M. Ganose, R. Yano, J.M. Riley, L. Bawden, O.J. Clark, J. Feng, L. Collins-Mcintyre, M.T. Sajjad, and W. Meevasana, Phys. Rev. B 96, 085205 (2017).

    Article  Google Scholar 

  14. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Mater. 21, 395502 (2009).

    Article  Google Scholar 

  15. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  16. A. Dal Corso, Comput. Mater. Sci. 95, 337 (2014).

    Article  Google Scholar 

  17. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  18. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  19. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  20. J.L. Webb, L.S. Hart, D. Wolverson, C. Chen, J. Avila, and M.C. Asensio, Phys. Rev. B 96, 115205 (2017).

    Article  Google Scholar 

  21. C.H. Ho, Y.S. Huang, P.C. Liao, and K.K. Tiong, J. Phys. Chem. Solids 60, 1797 (1999).

    Article  Google Scholar 

  22. E. Liu, Y. Fu, Y. Wang, Y. Feng, H. Liu, X. Wan, W. Zhou, B. Wang, L. Shao, and C.-H. Ho, Nat. Commun. 6, 6991 (2015).

    Article  Google Scholar 

  23. H. Zhao, J. Wu, H. Zhong, Q. Guo, X. Wang, F. Xia, L. Yang, P. Tan, and H. Wang, Nano Res. 8, 3651 (2015).

    Article  Google Scholar 

  24. K. Dileep, R. Sahu, S. Sarkar, S.C. Peter, and R. Datta, J. Appl. Phys. 119, 114309 (2016).

    Article  Google Scholar 

  25. W. Wen, Y. Zhu, X. Liu, H.P. Hsu, Z. Fei, Y. Chen, X. Wang, M. Zhang, K.H. Lin, F.S. Huang, Y.P. Wang, Y.S. Huang, C.H. Ho, P.H. Tan, C. Jin, and L. Xie, Small 13, 1603788 (2017).

    Article  Google Scholar 

  26. J.P. Echeverry and I.C. Gerber, Phys. Rev. B 97, 075123 (2018).

    Article  Google Scholar 

  27. A. Arora, J. Noky, M. Drüppel, B. Jariwala, T. Deilmann, R. Schneider, R. Schmidt, O. Del Pozo-Zamudio, T. Stiehm, A. Bhattacharya, P. Krüger, S.M. de Vasconcellos, M. Rohlfing, and R. Bratschitsch, Nano Lett. 17, 3202 (2017).

    Article  Google Scholar 

  28. C.H. Ho, Y.S. Huang, K.K. Tiong, and P.C. Liao, Phys. Rev. B 58, 16130 (1998).

    Article  Google Scholar 

  29. I. Gutierrez-Lezama, B.A. Reddy, N. Ubrig, and A.F. Morpurgo, 2D Mater. 3, 045016 (2016).

  30. S.J. Zelewski and R. Kudrawiec, Sci. Rep. 7, 15365 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre for Graphene Science of the Universities of Bath and Exeter and by the Engineering and Physical Sciences Research Council EPSRC (UK) under Grants Nos. EP/G036101, EP/M022188, and EP/P004830; S.M.G. and L.S.H. are supported by the Bath-Bristol Centre for Doctoral Training in Condensed Matter Physics, Grant No. EP/L015544. Associated experimental studies were supported by the award of beam time at the DIAMOND (IO5) and SOLEIL (ANTARES) synchrotron beam lines and by EPSRC Grant No. EP/P004830/1. Computational work was performed on the University of Bath’s High Performance Computing Facility. Data created during this research are freely available from the University of Bath data archive at https://doi.org/10.15125/bath-00331, https://doi.org/10.15125/bath-00332.

Author information

Authors and Affiliations

  1. Centre for Nanoscience and Nanotechnology, Department of Physics, University of Bath, Bath, BA2 7AY, UK

    Surani M. Gunasekera, Daniel Wolverson, Lewis S. Hart & Marcin Mucha-Kruczynski

Authors
  1. Surani M. Gunasekera
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Daniel Wolverson
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Lewis S. Hart
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Marcin Mucha-Kruczynski
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel Wolverson.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunasekera, S.M., Wolverson, D., Hart, L.S. et al. Electronic Band Structure of Rhenium Dichalcogenides. J. Electron. Mater. 47, 4314–4320 (2018). https://doi.org/10.1007/s11664-018-6239-0

Download citation

  • Received: 31 December 2017

  • Accepted: 14 March 2018

  • Published: 22 March 2018

  • Issue Date: August 2018

  • DOI: https://doi.org/10.1007/s11664-018-6239-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • ReSe2
  • ReS2
  • rhenium dichalcogenides
  • angle-resolved photoemission
  • band structure
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

18th International Conference on II-VI Compounds and Related Materials

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature