Advertisement

Journal of Electronic Materials

, Volume 47, Issue 8, pp 4308–4313 | Cite as

Effects on Magnetic Properties of GaMnAs Induced by Proximity of Topological Insulator Bi2Se3

  • Seul-Ki Bac
  • Hakjoon Lee
  • Sangyeop Lee
  • Seonghoon Choi
  • Sanghoon Lee
  • X. Liu
  • M. Dobrowolska
  • J. K. Furdyna
Topical Collection: 18th International Conference on II-VI Compounds
  • 60 Downloads
Part of the following topical collections:
  1. 18th International Conference on II-VI Compounds and Related Materials

Abstract

Effects induced by a topological insulator Bi2Se3 on the magnetic properties of an adjacent GaMnAs film have been investigated using transport measurements. We observed three conspicuous effects in the GaMnAs layer induced by the proximity of the Bi2Se3 overlayer. First, our resistivity data as a function of temperature show that the GaMnAs layer adjacent to the Bi2Se3 displayed strongly metallic behavior, as compared with the GaMnAs control specimen. Second, the Curie temperature of the GaMnAs in the bilayer was observed to be higher than that of the control layer, in our case by nearly a factor of two. Finally, we observed significant changes in the in-plane magnetic anisotropy of the GaMnAs in the bilayer, in the form of much higher values of both cubic and uniaxial anisotropy parameters. This latter feature manifests itself in a rather spectacular increase of the coercive field observed in magnetization reversal across the in-plane hard axis. These results suggest that proximity of an adjacent Bi2Se3 layer represents an important tool for modifying and controlling the ferromagnetic properties of GaMnAs film, and could thus be used to optimize this and similar materials for applications in spintronic devices.

Keywords

Ferromagnetic semiconductors topological insulator proximity effects anomalous Hall effect planar Hall effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Yu, W. Zhang, H.-J.J. Zhang, S.-C.C. Zhang, X. Dai, Z. Fang, and X.D.Z. Fang, Science 329, 61 (2010).CrossRefGoogle Scholar
  2. 2.
    C.Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L.L. Wang, Z.Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S.C. Zhang, K. He, Y. Wang, L. Lu, X.C. Ma, and Q.K. Xue, Science 340, 167 (2013).CrossRefGoogle Scholar
  3. 3.
    R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Nat. Phys. 6, 284 (2010).CrossRefGoogle Scholar
  4. 4.
    F. Mahfouzi, N. Nagaosa, and B.K. Nikolić, Phys. Rev. Lett. 109, 166602 (2012).CrossRefGoogle Scholar
  5. 5.
    D. Pesin and A.H. MacDonald, Nat. Mater. 11, 409 (2012).CrossRefGoogle Scholar
  6. 6.
    A.R. Mellnik, J.S. Lee, A. Richardella, J.L. Grab, P.J. Mintun, M.H. Fischer, A. Vaezi, A. Manchon, E.A. Kim, N. Samarth, and D.C. Ralph, Nature 511, 449 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Jamali, J.S. Lee, J.S. Jeong, F. Mahfouzi, Y. Lv, Z. Zhao, B.K. Nikolić, K.A. Mkhoyan, N. Samarth, and J.-P. Wang, Nano Lett. 15, 7126 (2015).CrossRefGoogle Scholar
  8. 8.
    Y.L. Chen, J.-H. Chu, J.G. Analytis, Z.K. Liu, K. Igarashi, H.-H. Kuo, X.L. Qi, S.K. Mo, R.G. Moore, D.H. Lu, M. Hashimoto, T. Sasagawa, S.C. Zhang, I.R. Fisher, Z. Hussain, and Z.X. Shen, Science 329, 659 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Liu, J. Zhang, C.Z. Chang, Z. Zhang, X. Feng, K. Li, K. He, L.L. Wang, X. Chen, X. Dai, Z. Fang, Q.K. Xue, X. Ma, and Y. Wang, Phys. Rev. Lett. 108, 36805 (2012).CrossRefGoogle Scholar
  10. 10.
    C.-Z. Chang, P. Tang, Y.-L. Wang, X. Feng, K. Li, Z. Zhang, Y. Wang, L.-L. Wang, X. Chen, C. Liu, W. Duan, K. He, X.-C. Ma, and Q.-K. Xue, Phys. Rev. Lett. 112, 56801 (2014).CrossRefGoogle Scholar
  11. 11.
    J.S. Lee, A. Richardella, D.W. Rench, R.D. Fraleigh, T.C. Flanagan, J.A. Borchers, J. Tao, and N. Samarth, Phys. Rev. B 89, 174425 (2014).CrossRefGoogle Scholar
  12. 12.
    P. Wei, F. Katmis, B.A. Assaf, H. Steinberg, P. Jarillo-Herrero, D. Heiman, and J.S. Moodera, Phys. Rev. Lett. 110, 186807 (2013).CrossRefGoogle Scholar
  13. 13.
    Q.I. Yang, M. Dolev, L. Zhang, J. Zhao, A.D. Fried, E. Schemm, M. Liu, A. Palevski, A.F. Marshall, S.H. Risbud, and A. Kapitulnik, Phys. Rev. B 88, 81407 (2013).CrossRefGoogle Scholar
  14. 14.
    F. Katmis, V. Lauter, F.S. Nogueira, B.A. Assaf, M.E. Jamer, P. Wei, B. Satpati, J.W. Freeland, I. Eremin, D. Heiman, P. Jarillo-Herrero, and J.S. Moodera, Nature 533, 513 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Honolka, A.A. Khajetoorians, V. Sessi, T.O. Wehling, S. Stepanow, J.-L.L. Mi, B.B. Iversen, T. Schlenk, J. Wiebe, N.B. Brookes, A.I. Lichtenstein, P. Hofmann, K. Kern, and R. Wiesendanger, Phys. Rev. Lett. 108, 256811 (2012).CrossRefGoogle Scholar
  16. 16.
    T. Eelbo, M. Sikora, G. Bihlmayer, M. Dobrzański, A. Kozłowski, I. Miotkowski, and R. Wiesendanger, New J. Phys. 15, 113026 (2013).CrossRefGoogle Scholar
  17. 17.
    V. Novak, K. Olejnik, J. Wunderlich, M. Cukr, K. Vyborny, A.W. Rushforth, K.W. Edmonds, R.P. Campion, B.L. Gallagher, J. Sinova, and T. Jungwirth, Phys. Rev. Lett. 101, 77201 (2008).CrossRefGoogle Scholar
  18. 18.
    H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).CrossRefGoogle Scholar
  19. 19.
    D.V. Baxter, D. Ruzmetov, J. Scherschligt, Y. Sasaki, X. Liu, J.K. Furdyna, and C.H. Mielke, Phys. Rev. B 65, 212407 (2002).CrossRefGoogle Scholar
  20. 20.
    W.J. Wang, K.H. Gao, and Z.Q. Li, Sci. Rep. 6, 25291 (2016).CrossRefGoogle Scholar
  21. 21.
    H.-T. He, G. Wang, T. Zhang, I.-K. Sou, G.K.L. Wong, J.-N. Wang, H.-Z. Lu, S.-Q. Shen, and F.-C. Zhang, Phys. Rev. Lett. 106, 166805 (2011).CrossRefGoogle Scholar
  22. 22.
    H. He, B. Li, H. Liu, X. Guo, Z. Wang, M. Xie, and J. Wang, Appl. Phys. Lett. 100, 32105 (2012).CrossRefGoogle Scholar
  23. 23.
    Y. Zhao, C.Z. Chang, Y. Jiang, A. DaSilva, Y. Sun, H. Wang, Y. Xing, Y. Wang, K. He, X. Ma, Q.K. Xue, and J. Wang, Sci. Rep. 3, 3060 (2013).CrossRefGoogle Scholar
  24. 24.
    H. Son, S. Chung, S. Yea, S. Lee, X. Liu, and J.K. Furdyna, J. Appl. Phys. 103, 07F313 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsKorea UniversitySeoulRepublic of Korea
  2. 2.Department of PhysicsUniversity of Notre DameNotre DameUSA

Personalised recommendations