Journal of Electronic Materials

, Volume 47, Issue 7, pp 3741–3748 | Cite as

Sol–Gel Synthesis of Fe-Doped TiO2 Nanocrystals

  • Mohammad Bagher Marami
  • Majid Farahmandjou
  • Bahram Khoshnevisan


Fe-doped TiO2 powders were synthesized by the sol–gel method using titanium (IV) isopropoxide (TTIP) as the starting material, ethanol as solvent, and ethylene glycol (EG) as stabilizer. These prepared samples were characterized by x-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), Fourier-transform infrared (FTIR) spectroscopy, diffuse reflection spectroscopy (DRS), energy-dispersive x-ray spectroscopy (EDX), and photoluminescence (PL) analyses to study their structure, morphology, and optical properties. The particle size of Fe-doped TiO2 was in the range of 18–39 nm and the minimum crystallite size was achieved for 4 mol.% of Fe. The XRD result of the samples that were doped with Fe showed a tetragonal structure. It also revealed the coexistence of the anatase and rutile phases, and showed that their ratio changed with various molar concentrations of Fe dopant. FTIR spectroscopy showed the presence of the Ti-O vibration band in the samples. PL analysis revealed the PL property in the UV region. Visible irradiation and the intensity of PL spectra were both reduced by doping TiO2 with 3 mol.% of Fe as compared to the pure variety. The spectra from the DRS showed a red shift and a reduction of 2.6 eV in the band gap energy for 4 mol.% Fe-doped TiO2. The optimum level of impurity (4 mol.%) for Fe-doped TiO2 nanoparticles (NPs), which improve the optical and electrical properties by using new precursors and can be used in solar cells and electronic devices, was determined. The novelty of this work consists of: the Fe/TiO2 NPs are synthesized by new precursors from sol–gel synthesis of iron and TTIP using acetic acid-catalyzed solvolysis (original idea) and the optical properties optimized with a mixture of phases (anatase/rutile) of Fe-doped TiO2 by this facile method.


Fe-doped TiO2 sol–gel characterization XRD band gap photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.O. Robichaud, A.E. Uyar, M.R. Darby, K.G. Zycker, and M.R. Wiesner, Environ. Sci. Technol. 43, 4227 (2009).CrossRefGoogle Scholar
  2. 2.
    M. Dastpak, M. Farahmandjou, and T.P. Firoozabadi, J. Supercond. Nov. Magn. 29, 2925 (2016).CrossRefGoogle Scholar
  3. 3.
    M. Farahmandjou and M. Zarinkamar, J. Ceram. Process. Res. 17, 166 (2016).Google Scholar
  4. 4.
    M. Farahmandjou and N. Golabiyan, J. Ceram. Process. Res. 16, 237 (2015).Google Scholar
  5. 5.
    M. Farahmandjou, S. Honarbakhsh, and S. Behrouzinia, Phys. Chem. Res. 4, 655 (2016).Google Scholar
  6. 6.
    M. Farahmandjou, M. Zarinkamar, and T.P. Firoozabadi, Rev. Mex. Fis. 62, 76 (2016).Google Scholar
  7. 7.
    M. Dastpak, M. Farahmandjou, and T.P. Firoozabadi, J. Supercond Nov. Magn. 29, 849 (2016).CrossRefGoogle Scholar
  8. 8.
    M. Farahmandjou and F. Soflaee, Chin. J. Phys. 53, 080801 (2015).Google Scholar
  9. 9.
    M. Farahmandjou, Acta Phys. Pol. A 123, 277 (2013).CrossRefGoogle Scholar
  10. 10.
    A. Fujishima, T.N. Rao, and D.A. Truk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000).CrossRefGoogle Scholar
  11. 11.
    X. Chen and S.S. Mao, Chem. Rev. 107, 2891 (2007).CrossRefGoogle Scholar
  12. 12.
    B.M. Reddy, I. Ganesh, and A. Khan, J. Mol. Catal. A Chem. 223, 295 (2004).CrossRefGoogle Scholar
  13. 13.
    K. Josep Antony Raj and B. Vishwanathan, Indian J. Chem. 48, 1378 (2009).Google Scholar
  14. 14.
    L. Gang, W. Xuewen, C. Zhigang, C. Hui-Ming, and L.G. Qing, Colloid Interface Sci. 329, 331 (2009).CrossRefGoogle Scholar
  15. 15.
    M. Ramazani, M. Farahmandjou, and T.P. Firoozabadi, Phys. Chem. Res. 3, 293 (2015).Google Scholar
  16. 16.
    M. Ramazani, M. Farahmandjou, and T.P. Firoozabadi, Int. J. Nanosci. Nanotechnol. 11, 115 (2015).Google Scholar
  17. 17.
    J. Yu, Q. Xiang, and M. Zhou, Appl. Catal. B Environ. 90, 595 (2009).CrossRefGoogle Scholar
  18. 18.
    U.G. Akpan and B.H. Hameed, Appl. Catal. A 375, 1 (2010).CrossRefGoogle Scholar
  19. 19.
    W.Y. Choi, A. Termin, and M.R. Hoffmann, J. Phys. Chem. 98, 13669 (1994).CrossRefGoogle Scholar
  20. 20.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2011).CrossRefGoogle Scholar
  21. 21.
    J. Choi, H. Park, and M. Hoffmann, J. Phys. Chem. C 114, 783 (2010).CrossRefGoogle Scholar
  22. 22.
    A. Kachina, E. Puzenat, S. Ould-Chikh, C. Geantet, P. Delichere, and P. Afanasiev, Chem. Mater. 24, 636 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Zhang, C. Pan, P. Fang, J. Wei, R. Xiong, and A.C.S. Appl, Mater. Interfaces 2, 1173 (2010).CrossRefGoogle Scholar
  24. 24.
    H. Liu, Y. Wu, J. Zhang, and A.C.S. Appl, Mater. Interfaces 3, 1757 (2011).CrossRefGoogle Scholar
  25. 25.
    D.R. Pulsipher, I.T. Martin, E.R. Fisher, and A.C.S. Appl, Mater. Interfaces 2, 1743 (2010).CrossRefGoogle Scholar
  26. 26.
    M.A.T. Izmajlowicz, A.J. Flewitt, W.I. Milne, and N.A. Morrison, J. Appl. Phys. 94, 7535 (2003).CrossRefGoogle Scholar
  27. 27.
    M. Epifani, C. Giannini, L. Tapfer, and L. Vasanelli, J. Am. Ceram. Soc. 83, 2385 (2000).CrossRefGoogle Scholar
  28. 28.
    B. Khoshnevisan, M.B. Marami, and M. Farahmandjou, Chin. Phys. Lett. 35, 027501 (2018).CrossRefGoogle Scholar
  29. 29.
    N. Bouazizi, R. Bargougui, T. Boudharaa, M. Khelil, A. Benghnia, L. Labiadh, R.B. Slama, B. Chaouachi, S. Ammar, and A. Azzouz, Ceram. Int. 42, 9413 (2016).CrossRefGoogle Scholar
  30. 30.
    N. Bouazizi, F. Ajala, M. Khelil, H. Lachheb, K. Khirouni, A. Houas, and A. Azzouz, J. Mater. Sci. Mater. Electron. 27, 11168 (2016).CrossRefGoogle Scholar
  31. 31.
    I. Ganesh, P. Kumar, K. Gupta, S.C. Panakati, R. Kalathur, P. Gadhe, and S. Govindan, Proc. Appl. Ceram. 6, 21 (2012).CrossRefGoogle Scholar
  32. 32.
    H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, and M. Anpo, Catal. Today 84, 191 (2003).CrossRefGoogle Scholar
  33. 33.
    X.H. Wang, J.-G. Li, H. Kamiyama, and T. Ishigaki, Thin Solid Films 278, 506 (2006).Google Scholar
  34. 34.
    C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi, and M. Gartner, Thin Solid Films 433, 186 (2003).CrossRefGoogle Scholar
  35. 35.
    M. Sokmen, F. Candan, and Z. Sumer, J. Photochem. Photobiol. Chem. 143, 241 (2001).CrossRefGoogle Scholar
  36. 36.
    I. Djerdj and A.M. Tonejc, J. Alloy Compd. 413, 159 (2006).CrossRefGoogle Scholar
  37. 37.
    J. Moser, M. Gratzel, and R. Gallay, Helv. Chim. Acta 70, 1596 (1987).CrossRefGoogle Scholar
  38. 38.
    W. Li, A.I. Frenkel, J.C. Woicik, C. Ni, and S.I. Shah, Phys. Rev. B 72, 155315 (2005).CrossRefGoogle Scholar
  39. 39.
    R.S. Santos, G.A. Faria, C. Giles, C.A.P. Leite, H.S. Barbosa, M.A.Z. Arruda, C. Longo, and A.C.S. Appl, Mater. Interfaces 4, 5555 (2012).CrossRefGoogle Scholar
  40. 40.
    D. Reyes-corondo, G. Rodriguez-gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, Nanotechnology 19, 145605 (2008).CrossRefGoogle Scholar
  41. 41.
    Y.H. Zhang and A. Reller, J. Mater. Chem. 11, 2537 (2001).CrossRefGoogle Scholar
  42. 42.
    J. Zhu, W. Zheng, B. He, J. Zhang, and M. Anpo, J. Mol. Catal A 216, 35 (2004).CrossRefGoogle Scholar
  43. 43.
    C.Y. Wang, C. Bottcer, D.W. Bahnemann, and J.K. Dohrmann, J. Mater. Chem. 13, 2322 (2003).CrossRefGoogle Scholar
  44. 44.
    M. Hiran, T. Joji, M. Inagaki, and H. Iwata, J. Am. Ceram. Soc. 87, 35 (2004).CrossRefGoogle Scholar
  45. 45.
    R. Alexandrescu, I. Morjan, M. Scarisoreanu, R. Birjega, E. Popovici, I. Soare, L. Gavrila-Florescu, I. Voicu, I. Sandu, F. Dumitrache, G. Prodan, E. Vasile, and E. Figgemeier, Thin Solid Films 515, 8438 (2007).CrossRefGoogle Scholar
  46. 46.
    X. Zhang, M. Zhou, and L. Lei, Catal. Commun. 7, 427 (2006).CrossRefGoogle Scholar
  47. 47.
    S. Liu, X. Liu, Y. Chen, and R. Jiang, J. Alloys Compd. 506, 877 (2010).CrossRefGoogle Scholar
  48. 48.
    S. Reginaldo, S. Santos, A. Guilherme, A.P. Carlos, S. Leite, S. Herbert, A.Z. Marco, C. Longo, and A.C.S. Appl, Mater. Interfaces 4, 5555 (2012).CrossRefGoogle Scholar
  49. 49.
    T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed, and M. Muneer, Mater. Res. Express 4, 015022 (2017).CrossRefGoogle Scholar
  50. 50.
    Y. Yang, T. Yu, J. Wang, W. Zheng, and Y. Cao, Cryst. Eng. Comm. 19, 1100 (2017).CrossRefGoogle Scholar
  51. 51.
    R.J. Ramalingam, P. Arunachalam, T. Radhika, K.R. Anju, K.C. Nimitha, and H.A. Al-Lohedan, Int. J. Electrochem. Sci. 12, 797 (2017).CrossRefGoogle Scholar
  52. 52.
    C.L. Luu, Q.T. Nguyen, and S.T. Ho, Adv. Nat. Sci. Nanosci. Nanotechnol 1, 015008 (2010).CrossRefGoogle Scholar
  53. 53.
    A.R. Denton and N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991).CrossRefGoogle Scholar
  54. 54.
    Q. Chen, C. Xue, X. Li, and Y. Wang, Mater. Sci. Forum 743, 367 (2013).CrossRefGoogle Scholar
  55. 55.
    S. Khatoon, I.A. Wani, J. Ahmed, T. Magdaleno, O.A. Al-Hartomy, and T. Ahmad, Mater. Chem. Phys. 138, 519 (2013).CrossRefGoogle Scholar
  56. 56.
    W. Siripala and M. Tomkieviez, J. Electrochem. Soc. 129, 1240 (1982).CrossRefGoogle Scholar
  57. 57.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev. 114, 9919 (2014).CrossRefGoogle Scholar
  58. 58.
    N.D. Abazovic, M.I. Comor, M.D. Dramicanin, D.J. Jovanovic, S.P. Ahrenkiel, and J.M. Nedeljkovic, J. Phys. Chem. B 110, 25366 (2006).CrossRefGoogle Scholar
  59. 59.
    N.D. Abazovic´, I.A. Ruvarac-Bugarcˇic´, M.I. Comor, N. Bibic´, S.P. Ahrenkiel, and J.M. Nedeljkovic´, Opt. Mater. 30, 1139 (2008).CrossRefGoogle Scholar
  60. 60.
    D. Beydoun, R. Amal, G. Low, and S. McEvoy, J. Nanopart. Res. 1, 439 (1999).CrossRefGoogle Scholar
  61. 61.
    L. Kernazhitsky, V. Shymanovska, V. Naumov, V. Chernyak, T. Khalyavka, and V. Kshnyakin, Ukr. J. Phys. Opt. 9, 197 (2008).CrossRefGoogle Scholar
  62. 62.
    W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, J. Ding, X. Zhou, H. Zhao, Y. Li, and W. Zhang, Nano Micro Lett. 3, 34 (2011).CrossRefGoogle Scholar
  63. 63.
    S. Naghibia, S. Vahed, and O. Torabi, J. Adv. Mater. Process. 2, 55 (2014).Google Scholar
  64. 64.
    W. Zhao, W. Fu, H. Yang, C. Tian, M. Li, J. Ding, W. Zhang, X. Zhou, H. Zhao, and Y. Li, Nano-Micro Lett. 3, 20 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Mohammad Bagher Marami
    • 1
  • Majid Farahmandjou
    • 2
  • Bahram Khoshnevisan
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversity of KashanKashanIslamic Republic of Iran
  2. 2.Departments of Physics, Varamin Pishva BranchIslamis Azad UniversityVaraminIran

Personalised recommendations