Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3733–3740 | Cite as

GePb Alloy Growth Using Layer Inversion Method

  • Hakimah Alahmad
  • Aboozar Mosleh
  • Murtadha Alher
  • Seyedeh Fahimeh Banihashemian
  • Seyed Amir Ghetmiri
  • Sattar Al-Kabi
  • Wei Du
  • Bauhoa Li
  • Shui-Qing Yu
  • Hameed A. Naseem
Article

Abstract

Germanium–lead films have been investigated as a new direct-bandgap group IV alloy. GePb films were deposited on Si via thermal evaporation of Ge and Pb solid sources using the layer inversion metal-induced crystallization method for comparison with the current laser-induced recrystallization method. Material characterization of the films using x-ray diffraction analysis revealed highly oriented crystallinity and Pb incorporation as high as 13.5% before and 5.2% after annealing. Transmission electron microscopy, scanning electron microscopy, and energy-dispersive x-ray mapping of the samples revealed uniform incorporation of elements and complete layer inversion. Optical characterization of the GePb films by Raman spectroscopy and photoluminescence techniques showed that annealing the samples resulted in higher crystalline quality as well as bandgap reduction. The bandgap reduction from 0.67 eV to 0.547 eV observed for the highest-quality material confirms the achievement of a direct-bandgap material.

Keywords

Metal-induced crystallization Si photonics GePb alloy x-ray diffraction photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Cressler and G. Niu, eds., Silicon-Germanium Heterojunction Bipolar Transistors (Boston: Artech House, 2003).Google Scholar
  2. 2.
    Y. Yeo, V. Subramanian, J. Kedzierski, P. Xuan, T. King, J. Bokor, and C. Hu, IEEE Trans. Electron Devices 49, 279 (2002).CrossRefGoogle Scholar
  3. 3.
    K. Ang, K. Chui, V. Bliznetsov, C. Tung, A. Du, N. Balasubramanian, G. Samudra, M.F. Li, and Y. Yeo, Appl. Phys. Lett. 86, 093102 (2005).CrossRefGoogle Scholar
  4. 4.
    D. Krapf, B. Adoram, J. Shappir, A. Sa’ar, S. Thomas, J. Liu, and K. Wang, Appl. Phys. Lett. 78, 495 (2001).CrossRefGoogle Scholar
  5. 5.
    L. Jiang, C. Xu, J.D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, Chem. Mater. 26, 2522 (2014).CrossRefGoogle Scholar
  6. 6.
    A. Mosleh, S.A. Ghetmiri, B.R. Conley, M. Hawkridge, M. Benamara, A. Nazzal, J. Tolle, S. Yu, and H.A. Naseem, J. Electron. Mater. 43, 938 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Oehme, D. Buca, K. Kostecki, S. Wirths, B. Holländer, E. Kasper, and J. Schulze, J. Cryst. Growth 384, 71 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Wirths, D. Buca, G. Mussler, A. Tiedemann, B. Holländer, P. Bernardy, T. Stoica, D. Grützmacher, and S. Mantl, ECS J. Solid State Sci. Technol. 2, N99 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Margetis, S.A. Ghetmiri, W. Du, B.R. Conley, A. Mosleh, R. Soref, G. Sun, L. Domulevicz, H.A. Naseem, and S. Yu, Electrochem. Soc. Trans. 35, 1830 (2014).Google Scholar
  10. 10.
    Y. Zhou, W. Dou, W. Du, T. Pham, S.A. Ghetmiri, S. Al-Kabi, A. Mosleh, M. Alher, J. Margetis, and J. Tolle, J. Appl. Phys. 120, 023102 (2016).CrossRefGoogle Scholar
  11. 11.
    S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, IEEE Electron Device Lett. 34, 1217 (2013).CrossRefGoogle Scholar
  12. 12.
    T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R.A. Soref, H.A. Naseem, B. Li, and S. Yu, Opt. Express 24, 4519 (2016).CrossRefGoogle Scholar
  13. 13.
    T. Pham, W. Du, B. Conley, J. Margetis, G. Sun, R. Soref, J. Tolle, B. Li, and S. Yu, Electron. Lett. 51, 854 (2015).CrossRefGoogle Scholar
  14. 14.
    J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, Appl. Phys. Lett. 98, 061108 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, and J. Hartmann, Nat. Photonics 9, 88 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Al-Kabi, S.A. Ghetmiri, J. Margetis, T. Pham, Y. Zhou, B. Collier, R. Quinde, W. Du, A. Mosleh, J. Liu, R.A. Soref, J. Tolle, B. Li, M. Mortazavi, H.A. Naseem, and S. Yu, Appl. Phys. Lett. 109, 171105 (2016).CrossRefGoogle Scholar
  17. 17.
    N. Von Den Driesch, D. Stange, S. Wirths, G. Mussler, B. Holländer, Z. Ikonic, J. Hartmann, T. Stoica, S. Mantl, and D. Grützmacher, Chem. Mater. 27, 4693 (2015).CrossRefGoogle Scholar
  18. 18.
    S.A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Cousar, B.R. Conley, L. Domulevicz, A. Nazzal, G. Sun, and R.A. Soref, Appl. Phys. Lett. 105, 151109 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Margetis, A. Mosleh, S. Al-Kabi, S. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, and H. Naseem, J. Cryst. Growth 463, 128 (2017).CrossRefGoogle Scholar
  20. 20.
    W. Huang, B. Cheng, C. Xue, and H. Yang, J. Alloys Compd. 701, 816 (2017).CrossRefGoogle Scholar
  21. 21.
    W. Huang, B. Cheng, C. Xue, and C. Li, Physica B 443, 43 (2014).CrossRefGoogle Scholar
  22. 22.
    E. Parthé, Crystal Chemistry of Tetrahedral Structures (Boca Raton: CRC Press, 1964).Google Scholar
  23. 23.
    D.L. Tsalev, P.B. Mandjukov, and D.L. Draganova, Spectrosc. Lett. 25, 943 (1992).CrossRefGoogle Scholar
  24. 24.
    J. Schlipf, J. Frieiro, I. Fischer, C. Serra, J. Schulze, and S. Chiussi, in 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija (2017), p. 37.Google Scholar
  25. 25.
    Q. Zhou, C. Zhan, X. Gong, T.K. Chan, T. Osipowicz, S.L. Lim, E.S. Tok, and Y. Yeo, in 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), Singapore (2014), p. 80.Google Scholar
  26. 26.
    Q. Zhou, T.K. Chan, S.L. Lim, C. Zhan, T. Osipowicz, X. Gong, E.S. Tok, and Y. Yeo, ECS Solid State Lett. 3, P91 (2014).CrossRefGoogle Scholar
  27. 27.
    K. Sharif, H.H. Abu-Safe, H. Naseem, W. Brown, M. Al-Jassim, and H.M. Meyer, in IEEE 4th World Conference on Photovoltaic Energy Conference (Waikoloa, HI, 2006), pp. 1676--1679.  https://doi.org/10.1109/WCPEC.2006.279812.
  28. 28.
    H. Li, J. Brouillet, A. Salas, I. Chaffin, X. Wang, and J. Liu, ECS Trans. 64, 819 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Hakimah Alahmad
    • 1
  • Aboozar Mosleh
    • 2
  • Murtadha Alher
    • 1
    • 3
  • Seyedeh Fahimeh Banihashemian
    • 1
  • Seyed Amir Ghetmiri
    • 2
  • Sattar Al-Kabi
    • 1
  • Wei Du
    • 4
  • Bauhoa Li
    • 5
  • Shui-Qing Yu
    • 1
  • Hameed A. Naseem
    • 1
  1. 1.Department of Electrical EngineeringUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Physics and ChemistryUniversity of Arkansas at Pine BluffPine BluffUSA
  3. 3.Mechanical Engineering DepartmentUniversity of KerbalaKerbalaIraq
  4. 4.Department of Electrical EngineeringWilkes UniversityWilkes-BarreUSA
  5. 5.Arktonics, LLCFayettevilleUSA

Personalised recommendations