Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc

Article
  • 16 Downloads

Abstract

Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.

Keywords

Thermionic vacuum arc Pb doping n-type GaN thin film XRD dimensional analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Little and M. Kordesch, Appl. Phys. Lett. 78, 2891 (2001).CrossRefGoogle Scholar
  2. 2.
    K. Harafuji, T. Tsuchiya, and K. Kawamura, J. Appl. Phys. 96, 2513 (2004).CrossRefGoogle Scholar
  3. 3.
    Y.I. Diakité, S.D. Traoré, Y. Malozovsky, B. Khamala, L. Franklin, and D. Bagayoko, arXiv:1410.0984 (2014).
  4. 4.
    H. Kawai, K. Yamashita, E. Cannuccia, and A. Marini, Phys. Rev. B 89, 085202 (2014).CrossRefGoogle Scholar
  5. 5.
    C. Fong, S. Ng, F. Yam, H.A. Hassan, and Z. Hassan, Mater. Sci. Semicond. Process. 17, 63 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Feneberg, S. Osterburg, K. Lange, C. Lidig, B. Garke, R. Goldhahn, E. Richter, C. Netzel, M.D. Neumann, and N. Esser, Phys. Rev. B 90, 075203 (2014).CrossRefGoogle Scholar
  7. 7.
    M.L. Colussi, R.J. Baierle, and R.H. Miwa, J. Appl. Phys. 110, 033709 (2011).CrossRefGoogle Scholar
  8. 8.
    P. Hageman, W. Schaff, J. Janinski, and Z. Liliental-Weber, J. Cryst. Growth 267, 123 (2004).CrossRefGoogle Scholar
  9. 9.
    S. Bolat, C. Ozgit-Akgun, B. Tekcan, N. Biyikli, and A. Okyay, Appl. Phys. Lett. 104, 243505 (2014).CrossRefGoogle Scholar
  10. 10.
    R. Chen, W. Zhou, and H.S. Kwok, Appl. Phys. Lett. 100, 022111 (2012).CrossRefGoogle Scholar
  11. 11.
    Y.J. Hong, C.-H. Lee, J.B. Park, S.J. An, and G.-C. Yi, Appl. Phys. Lett. 103, 261116 (2013).CrossRefGoogle Scholar
  12. 12.
    H. Li, Y.-D. Shi, M. Feng, Q. Sun, and T.-C. Lu, Appl. Phys. Express 9, 042101 (2016).CrossRefGoogle Scholar
  13. 13.
    O. Heikkilä, J. Oksanen, and J. Tulkki, Appl. Phys. Lett. 102, 111111 (2013).CrossRefGoogle Scholar
  14. 14.
    L. Sang, M. Liao, and M. Sumiya, Sensors 13, 10482 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Kumar, H. Jeong, K. Polat, A. Okyay, and D. Lee, J. Phys. D Appl. Phys. 49, 275105 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Balci, W. Baughman, D.S. Wilbert, G. Shen, P. Kung, and S.M. Kim, Solid State Electron. 78, 68 (2012).CrossRefGoogle Scholar
  17. 17.
    A.W. Bruch, C. Xiong, B. Leung, M. Poot, J. Han, and H.X. Tang, Appl. Phys. Lett. 107, 141113 (2015).CrossRefGoogle Scholar
  18. 18.
    S. Pat, Ş. Korkmaz, S. Özen, and V. Şenay, Mater. Chem. Phys. 159, 1 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Marini, J. Leathersich, I. Mahaboob, J. Bulmer, N. Newman, and F.S. Shahedipour-Sandvik, J. Cryst. Growth 442, 25 (2016).CrossRefGoogle Scholar
  20. 20.
    S. Krishna, N. Aggarwal, M. Mishra, K. Maurya, M. Kaur, G. Sehgal, S. Singh, N. Dilawar, B.K. Gupta, and G. Gupta, J. Alloys Compd. 658, 0e475 (2016).CrossRefGoogle Scholar
  21. 21.
    R. Kajen, L. Bera, H. Tan, S. Dolmanan, Z. Cheong, and S. Tripathy, J. Electron. Mater. 45, 493 (2016).CrossRefGoogle Scholar
  22. 22.
    K. Vanheusden, W. Warren, J. Voigt, C. Seager, and D. Tallant, Appl. Phys. Lett. 67, 1280 (1995).CrossRefGoogle Scholar
  23. 23.
    G. Turgut and E. Sönmez, Metall. Mater. Trans. A 45, 3675 (2014).CrossRefGoogle Scholar
  24. 24.
    J. Kaur and S. Tripathi, J. Alloys Compd. 622, 953 (2015).CrossRefGoogle Scholar
  25. 25.
    F. Bayansal, Y. Gülen, B. Şahin, S. Kahraman, and H. Çetinkara, J. Alloys Compd. 619, 378 (2015).CrossRefGoogle Scholar
  26. 26.
    F. Boudjouan, A. Chelouche, T. Touam, D. Djouadi, and Y. Ouerdane, Mater. Sci. Semicond. Process. 41, 382 (2016).CrossRefGoogle Scholar
  27. 27.
    X. Li, S. Ma, F. Li, F. Yang, J. Liu, X. Zhang, Q. Zhao, X. Yang, C. Wang, and J. Zhu, Appl. Surf. Sci. 270, 467 (2013).CrossRefGoogle Scholar
  28. 28.
    R. Yousefi, F. Jamali-Sheini, A. Sa’aedi, A.K. Zak, M. Cheraghizade, S. Pilban-Jahromi, and N.M. Huang, Ceram. Int. 39, 9115 (2013).CrossRefGoogle Scholar
  29. 29.
    R. Ababakri, B. Song, G. Wang, Z.H. Zhang, R. Wu, J. Li, and J.K. Jian, Sci. Adv. Mater. 6, 263 (2014).CrossRefGoogle Scholar
  30. 30.
    J. Lyons, A. Janotti, and C. Van de Walle, Phys. Rev. B 89, 035204 (2014).CrossRefGoogle Scholar
  31. 31.
    S. Khromov, C. Hemmingsson, B. Monemar, L. Hultman, and G. Pozina, J. Appl. Phys. 116, 223503 (2014).CrossRefGoogle Scholar
  32. 32.
    S. Nakamura, T. Mukai, and M. Senoh, Jpn. J. Appl. Phys. 31, 2883 (1992).CrossRefGoogle Scholar
  33. 33.
    S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, Mater. Res. Express 3, 045012 (2016).CrossRefGoogle Scholar
  34. 34.
    S. Özen, Ş. Korkmaz, V. Şenay, and S. Pat, J. Mater. Sci. Mater. Electron. 28, 1288 (2017).CrossRefGoogle Scholar
  35. 35.
    H. Ehrich, G. Musa, A. Popescu, I. Mustata, A. Salabas, M. Cretu, and G.F. Leu, Thin Solid Films 343, 63 (1999).CrossRefGoogle Scholar
  36. 36.
    S. Özen, S. Pat, V. Şenay, and Ş. Korkmaz, Vacuum 135, 50 (2017).CrossRefGoogle Scholar
  37. 37.
    S. Pat, S. Özen, V. Senay, and Ş. Korkmaz, Vacuum 133, 38 (2016).CrossRefGoogle Scholar
  38. 38.
    I. Jepu, C. Porosnicu, C. Lungu, I. Mustata, C. Luculescu, V. Kuncser, G. Iacobescu, A. Marin, and V. Ciupina, Surf. Coat. Technol. 240, 344 (2014).CrossRefGoogle Scholar
  39. 39.
    S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, Scanning 38, 14 (2015).CrossRefGoogle Scholar
  40. 40.
    Y. Park, S.H. Choi, and G.C. King, U.S. Patent and Trademark Office, Washington, 2011, U.S. Patent No. 7906358.Google Scholar
  41. 41.
    K. Bao, L. Shi, X. Liu, C. Chen, W. Mao, L. Zhu, and J. Cao, J. Nanomater. 2010, 6 (2010).CrossRefGoogle Scholar
  42. 42.
    B. Mayoral, P.R. Hornsby, T. McNally, T.L. Schiller, K. Jack, and D.J. Martin, RSC Adv. 3, 5162 (2013).CrossRefGoogle Scholar
  43. 43.
    Z. Tachan, M. Shalom, I. Hod, S. Ruhle, S. Tirosh, and A. Zaban, J. Phys. Chem. C 115, 6162 (2011).CrossRefGoogle Scholar
  44. 44.
    Y. Zhang, B. Chen, and Z. Guo, Acta Metall. Sin. Engl. 27, 331 (2014).CrossRefGoogle Scholar
  45. 45.
    H. An, X. Zhao, Z. Jia, C. Wu, and Y. Wang, Front. Chem. Eng. Chin. 3, 215 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsEskişehir Osmangazi UniversityEskişehirTurkey

Personalised recommendations