Journal of Electronic Materials

, Volume 47, Issue 7, pp 3392–3397 | Cite as

Seebeck Coefficient of Cation-Substituted Disulfides CuCr1−xFe x S2 and Cu1−xFe x CrS2

  • Evgeniy V. Korotaev
  • Mikhail M. Syrokvashin
  • Irina Yu. Filatova
  • Konstantin G. Pelmenev
  • Valentina V. Zvereva
  • Natalya N. Peregudova


The effect of cation substitution on the Seebeck coefficient of CuCr1−xFe x S2 (x = 0 to 0.30) and Cu1−xFe x CrS2 (x = 0 to 0.03) in the temperature range of 100 K to 450 K has been investigated. Increasing iron concentration led to a metal–insulator transition which suppressed the thermoelectric power. However, for low iron concentration (x < 0.03), the Seebeck coefficient of CuCr1−xFe x S2 and Cu1−xFe x CrS2 exceeded the values for the undoped copper-chromium disulfide matrix CuCrS2 at temperature below 300 K.


Thermoelectric power Seebeck coefficient cation-substituted disulfides quantum-chemical calculations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Ph.D. Sokolov V.V. (NIIC SB RAS) for assistance in carrying out the synthesis and characterization of the samples studied. The reported study was funded by RFBR according to Research Project No. 16-032-00612_mol_a.


  1. 1.
    S.S. Thipse, Non conventional and renewable energy sources, 1st ed. (Oxford: Alpha Science International, 2014), p. 354.Google Scholar
  2. 2.
    D. Srivastava, G.C. Tewari, and M. Karppinen, J. Phys. Condens. Matter 26, 505501 (2014).CrossRefGoogle Scholar
  3. 3.
    C.-G. Han, B.-P. Zhang, Z.-H. Ge, L.-J. Zhang, and Y.-C. Liu, J. Mater. Sci. 48, 4081 (2013).CrossRefGoogle Scholar
  4. 4.
    G.C. Tewari, T.S. Triathi, and A.K. Rastogi, J. Electron. Mater. 39, 1133 (2010).CrossRefGoogle Scholar
  5. 5.
    G.C. Tewari, T.S. Triathi, and A.K. Rastogi, Z. Kristallogr. Cryst. Mater. 225, 471 (2010). Scholar
  6. 6.
    A. Kaltzoglou, P. Vaqueiro, T. Barbier, E. Guilmeau, and A.V. Powell, J. Electron. Mater. 43, 2029 (2014). Scholar
  7. 7.
    R.A. Yakshibaev, G.R. Akmanova, and N.N. Bikkulova, Russ. J. Electrochem. 51, 587 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Karmakar, K. Dey, S. Chatterjee, S. Majumdar, and S. Giri, Appl. Phys. Lett. 104, 052906 (2014).CrossRefGoogle Scholar
  9. 9.
    R.F. Al’mukhametov, R.A. Yakshibaev, and A.R. Abdullin, Inorg. Mater. 38, 447 (2002). CrossRefGoogle Scholar
  10. 10.
    R.F. Al’mukhametov, R.A. Yakshibaev, and E.V. Gabitov, Phys. Solid State 41, 1327 (1999).CrossRefGoogle Scholar
  11. 11.
    G.M. Abramova and G.A. Petrakovskii, Low Temp. Phys. 32, 725 (2006).CrossRefGoogle Scholar
  12. 12.
    V.A. Varnek, V.V. Sokolov, I.Yu. Filatova, and S.A. Petrov, J. Struct. Chem. 50, 351 (2009).CrossRefGoogle Scholar
  13. 13.
    I.G. Vasil`eva and V.V. Kriventsov, J. Synch. Investig. 4, 640 (2010). Scholar
  14. 14.
    Inorganic Crystal Structure Database. Version 2.1.0/FIZ Karlsruhe, Germany.Google Scholar
  15. 15.
    ADF2014, SCM, Theoretical chemistry (Vrije Universiteit, Amsterdam). The Netherlands.
  16. 16.
    J. Fraden, Handbook of Modern Sensors, 5th ed. (Berlin: Springer, 2016). Google Scholar
  17. 17.
    K.V. Shalimova, Semiconductors physics (Moscow: Energoatomizdat, 1985), p. 392.Google Scholar
  18. 18.
    T. Katase, K. Endo, and H. Ohta, Phys. Rev. B 92, 035302 (2015).CrossRefGoogle Scholar
  19. 19.
    N.F. Mott and E.A. Davis, Electronic process in non-crystalline materials, 2nd ed. (Oxford: Clarendon Press, 1979), p. 605.Google Scholar
  20. 20.
    I.G. Vasilyeva, J. Struct. Chem. 58, 1009 (2017).CrossRefGoogle Scholar
  21. 21.
    Yu.L. Mikhlin, Zhurnal Obshchei Khimii 55, 80 (2001).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Nikolaev Institute of Inorganic ChemistrySiberian Branch of Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations