Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3709–3716 | Cite as

Optimum Operating Conditions for PZT Actuators for Vibrotactile Wearables

  • Irini Logothetis
  • Dimitra Matsouka
  • Savvas Vassiliadis
  • Clio Vossou
  • Elias Siores
Article
  • 28 Downloads

Abstract

Recently, vibrotactile wearables have received much attention in fields such as medicine, psychology, athletics and video gaming. The electrical components presently used to generate vibration are rigid; hence, the design and creation of ergonomical wearables are limited. Significant advances in piezoelectric components have led to the production of flexible actuators such as piezoceramic lead zirconate titanate (PZT) film. To verify the functionality of PZT actuators for use in vibrotactile wearables, the factors influencing the electromechanical conversion were analysed and tested. This was achieved through theoretical and experimental analyses of a monomorph clamped-free structure for the PZT actuator. The research performed for this article is a three-step process. First, a theoretical analysis presents the equations governing the actuator. In addition, the eigenfrequency of the film was analysed preceding the experimental section. For this stage, by applying an electric voltage and varying the stimulating electrical characteristics (i.e., voltage, electrical waveform and frequency), the optimum operating conditions for a PZT film were determined. The tip displacement was measured referring to the mechanical energy converted from electrical energy. From the results obtained, an equation for the mechanical behaviour of PZT films as actuators was deduced. It was observed that the square waveform generated larger tip displacements. In conjunction with large voltage inputs at the predetermined eigenfrequency, the optimum operating conditions for the actuator were achieved. To conclude, PZT films can be adapted to assist designers in creating comfortable vibrotactile wearables.

Keywords

Vibrotactile piezoelectric actuator lead-zirconate-titanate (PZT) film wearable technology 

List of symbols

A

Cross-sectional area

d31

Piezoelectric charge constant; mechanical strain in direction 1 per unit of electric field applied in direction 3

D

Dielectric displacement (vector); displacement effect of an electric field on the polarisation charges within a dielectric material \( D = \varepsilon_{0} E + P \)

P

Polarization density of the material

E

Electric field

m

Mass

P

Concentration load at free end

\( s_{11}^{E} \)

Property of material undergoing elastic deformation under constant electric

S

Mechanical strain produced per unit of stress applied

T

Mechanical stress field, stress and accompanying strain in direction 1

y

Tip displacement

\( \varepsilon_{33}^{T} \)

Permittivity for dielectric displacement per unit electric field in direction 3 at constant stress

ρ

Density of PZT

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.B. Shull and D.D. Damian, J. Neuroeng. Rehabil. (2015).  https://doi.org/10.1186/s12984-015-0055-z.Google Scholar
  2. 2.
    J. Martinez, A.S. Garcia, M. Oliver, J.P. Molina, and P. Gonzalez, Int. J. Hum. Comput. Interact. (2014).  https://doi.org/10.1080/10447318.2014.941272.Google Scholar
  3. 3.
    A.A. Priplata, J.B. Niemi, J.D. Harry, L.A. Lipsitz, and J.J. Collins, The Lancet (2003).  https://doi.org/10.1016/S0140-6736(03)14470-4.Google Scholar
  4. 4.
    A. Csapo, G. Wersenyi, H. Nagy, and T. Stockman, J. Multimodal User Interfaces (2015).  https://doi.org/10.1007/s12193-015-0182-7.Google Scholar
  5. 5.
    A.W. Williams, A. Roseway, C. O’Dowd, M. Czerwinski, and M.R. Morris, in ACM Conference Proceedings (2015), pp 293–300.Google Scholar
  6. 6.
    A. Mazzoni and N. Bryan-Kinns, in ACM Conference Proceedings (2016), pp. 21–24.Google Scholar
  7. 7.
    K. Yelamarthi, B.P. DeJong, and K. Laubhan, in IEEE Conference Proceedings (2014), pp. 635–638.Google Scholar
  8. 8.
    J. Amiguet, S. Sessa, H. Blueler, and A. Takanishi, in IEEE Conference Proceedings (2015), pp. 297–302.Google Scholar
  9. 9.
    S.C. Nanayakkara, L. Wyse, S.H. Ong, and A. Elizabeth, Hum. Comput. Interact. (2013).  https://doi.org/10.1080/07370024.2012.697006.Google Scholar
  10. 10.
    J. Klamet, J.C. Mattheis, and M. Minge, in ACM Conference Proceedings (2016).Google Scholar
  11. 11.
    S. Giannoulis and C. Sas, in IEEE Conference Proceedings (2013), pp. 594–599.Google Scholar
  12. 12.
    M.G. Honarvar and M. Latif, J. Text. Inst. (2017).  https://doi.org/10.1080/00405000.2016.1177870.Google Scholar
  13. 13.
    B. Corbett, C.S. Nam, and T. Yamaguchi, Int. J. Hum. Comput. Interact. (2015).  https://doi.org/10.1080/10447318.2015.1094914.Google Scholar
  14. 14.
    R. Velazquez, E. Pissaloux, and A. Lay-Ekuakille, Appl. Bionics Biomech. (2015).  https://doi.org/10.1155/2015/798748.Google Scholar
  15. 15.
    V. Rajanna, P. Vo, J. Barth, M. Mjelde, T. Grey, C. Oduola, and T. Hammond, J. Med. Syst. (2016).  https://doi.org/10.1007/s10916-015-0391-3.Google Scholar
  16. 16.
    T.S. Filgueiras, A.C.O. Lima, R.L. Baima, G.T.R. Oka, L.A.Q. Cordovil, and M.P. Bastos, in IEEE Conference Proceedings (2016).Google Scholar
  17. 17.
    J. Rantala, P. Majaranta, J. Kangas, P. Isokoski, D. Akkil, O. Špakov, and R. Raisamo, Hum. Comput. Interact. (2017).  https://doi.org/10.1080/07370024.2017.1306444.Google Scholar
  18. 18.
    M. Janidarmian, A.R. Fekr, K. Radecka, and Z. Zilic, in IEEE Conference Proceedings (2016), pp. 620–624.Google Scholar
  19. 19.
    C. Dalsgaard and R. Sterrett, Smart textile garments and devices: a market overview of smart textile wearable technologies (2014). http://www.ohmatex.dk/pdfer/whitepaper_smart_textiles.pdf. Accessed 10 Apr 2016.
  20. 20.
    ICT, Wearable Technology, Foresight Report – KARIM (2014). http://www.karimnetwork.com/wp-content/uploads/2014/11/Wearable-Technology-Final_November2014.pdf. Accessed 29 Mar 2016.
  21. 21.
    S. Grady, Powering wearable technology and internet of everything devices: what every product manager and designer needs to know (2014). http://www.cymbet.com/pdfs/Powering-Wearable-Technology-and-the-Internet-of-Everything-WP-72-10.1.pdf. Accessed 27 Mar 2016.
  22. 22.
    J. Zhao and Z. You, Sci. World J. (2014).  https://doi.org/10.1155/2014/893496.Google Scholar
  23. 23.
    Physik Instrumente (PI) GmbH & Co. KG, Piezoelectrics in Positioning: Tutorial on Piezotechnology in Nanopositioning Applications, Cat120E Inspirations2009 08/10.18 (2008). http://www.pi-usa.us/pdf/2009_PI_Piezo_University_Designing_with_Piezo_Actuators_Tutorial.pdf. Accessed 07 Mar 2016.
  24. 24.
    C. Jean-Mistral, S. Basrour, and J.J. Chaillout, Smart Mater. Struct. (2010).  https://doi.org/10.1088/0964-1726/19/8/085012.Google Scholar
  25. 25.
    I.Y. Shen, G.Z. Cao, C.C. Wu, and C.C. Lee, Ferroelectrics (2006).  https://doi.org/10.1080/00150190600946062.Google Scholar
  26. 26.
    A.L. Kholkin, D.A. Kiselev, L.A. Kholkine, and A. Safari, Smart Materials, ed. M. Schwartz (Boca Raton: CRC Press, 2008), p. 9-1.Google Scholar
  27. 27.
    K. Uchino and Y. Ito, Smart Materials, ed. M. Schwartz (Boca Raton: CRC Press, 2008), pp. 9–12.Google Scholar
  28. 28.
    R.G. Ballas, Piezoelectric Multilayer Beam Bending Actuators (Berlin: Springer, 2007).Google Scholar
  29. 29.
    P. Mattice, S. Oyeniya, M. Yanofsky, and B. Cassenti, UCONN ANSYS—Module 10: Free Vibration of an Undampened 1D Cantilever Beam (2012). http://www.engr.uconn.edu/∼cassenti/AnsysTutorial/Modules_APDL/Module%2010_Vibrations.pdf. Accessed 01 Apr 2016.
  30. 30.
    C.H. Sherman and J.L. Butter, Transducers and Arrays for Underwater Sound (New York: Springer, 2007), pp. 68–69.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Electronics EngineeringPiraeus University of Applied SciencesEgaleo, AthensGreece
  2. 2.Institute of Materials Research and InnovationUniversity of BoltonBoltonEngland, UK

Personalised recommendations