Skip to main content
Log in

Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A facile and simple synthetic route has been employed to synthesize rod-shaped optically efficient cadmium sulfide (CdS) mesoscopic structures using high concentrations of cetyl trimethyl ammonium bromide (CTAB) as the stabilizing agent. The mesoscopic structures were characterized using x-ray diffaractometer (XRD), scanning electron microscopy, UV–visible, photoluminescence (PL), and Fourier transform and infrared (FTIR) spectroscopy. It was found that, if the concentration of CTAB is significantly higher than its critical micelle concentration, the nucleation of CdS mesoscopic structures resulted in rod-like structures. The size of the mesoscopic structures initially increased and then decreased with band gaps 2.5–2.7 eV. XRD analysis showed that the samples had a pure cubic phase confirming the particle size. The values of Urbach energy for the absorption tail states were determined and found to be in agreement with the single crystal. PL spectra showed sharp green emission peaks in the 530-nm to 560-nm wavelength range. FTIR spectra showed the adsorption mode of CTAB onto the CdS mesoscopic structures. A possible mechanism of formation of rod-shaped CdS mesoscopic structures is also elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zhou, Y. Geng, Q. Chen, J. Xu, N. Huang, Y. Gan, and L. Zhou, Mater. Lett. 172, 171 (2016).

    Article  Google Scholar 

  2. C.V. Gopi, M. Venkata-Haritha, S. Kim, and H.J. Kim, RSC Adv. 5, 2963 (2015).

    Article  Google Scholar 

  3. Y. Mo, Y. Tang, F. Gao, J. Yang, and Y. Zhang, Ind. Eng. Chem. Res. 51, 5995 (2012).

    Article  Google Scholar 

  4. G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E.H. Sargent, Nature 442, 180 (2006).

    Article  Google Scholar 

  5. Y. Guo, L. Jiang, L. Wang, X. Shi, Q. Fang, L. Yang, and C. Shan, Mater. Lett. 74, 26 (2012).

    Article  Google Scholar 

  6. T. Shanmugapriya, R. Vinayakan, K.G. Thomas, and P. Ramamurthy, CrystEngComm 13, 2340 (2011).

    Article  Google Scholar 

  7. Y. Zou, D. Li, and D. Yang, Nanoscale Res. Lett. 6, 374 (2011).

    Article  Google Scholar 

  8. K.D. Nisha, M. Navaneethan, Y. Hayakawa, S. Ponnusamy, and C. Muthamizhchelvan, Mater. Chem. Phys. 136, 1038 (2012).

    Article  Google Scholar 

  9. W. Zhang, H. Zhang, and X. Zhong, RSC Adv. 3, 17477 (2013).

    Article  Google Scholar 

  10. S. Mridha and D. Basak, Phys. Status Solidi A 206, 1515 (2009).

    Article  Google Scholar 

  11. D.N. Rubingh and P.M. Holland, Surfactant science series (New York: M. Dekker, 1991), p. 525.

    Google Scholar 

  12. A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, and P. Yang, Nano Lett. 15, 4096 (2015).

    Article  Google Scholar 

  13. K. Wu, Y. Du, H. Tang, Z. Chen, and T. Lian, J. Am. Chem. Soc. 137, 10224 (2015).

    Article  Google Scholar 

  14. R. Narayanan, M. Deepa, and A.K. Srivastava, Phys. Chem. Chem. Phys. 14, 767 (2012).

    Article  Google Scholar 

  15. I.H. Arellano, J. Mangadlao, I.B. Ramiro, and K.F. Suazo, Mater. Lett. 64, 785 (2010).

    Article  Google Scholar 

  16. S. Kumar, M. Gradzielski, and S.K. Mehta, RSC Adv. 3, 2662 (2013).

    Article  Google Scholar 

  17. G. Pandey and S. Dixit, J. Phys. Chem. C 115, 17633 (2011).

    Article  Google Scholar 

  18. N. Gonçalves, J. Carvalho, Z. Lima, and J. Sasaki, Mater. Lett. 72, 36 (2012).

    Article  Google Scholar 

  19. B. Pejova, Mater. Chem. Phys. 119, 367 (2010).

    Article  Google Scholar 

  20. A. Podborska, B. Gaweł, L. Pietrzak, I.B. Szymańska, J.K. Jeszka, W. łasocha, and K. Szaciłowski, J. Phys. Chem. C 113, 6774 (2009).

    Article  Google Scholar 

  21. A.E. Rakhshani, J. Phys. Condens. Matter 12, 4391 (2000).

    Article  Google Scholar 

  22. V. Singh and P. Chauhan, J. Phys. Chem. Solids 70, 1074 (2009).

    Article  Google Scholar 

  23. Z. Lin, J.J. Cai, L.E. Scriven, and H.T. Davis, J. Phys. Chem. 98, 5984 (1994).

    Article  Google Scholar 

  24. Z. Wang and R.G. Larson, J. Phys. Chem. B 113, 13697 (2009).

    Article  Google Scholar 

  25. N. Vlachy, M. Drechsler, J. Verbavatz, D. Touraud, and W. Kunz, J. Colloid Interface Sci. 319, 542 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ashfaq Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, S., Mustafa, F., Jamil, A. et al. Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route. J. Electron. Mater. 47, 3701–3708 (2018). https://doi.org/10.1007/s11664-018-6225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6225-6

Keywords

Navigation