Journal of Electronic Materials

, Volume 47, Issue 7, pp 3701–3708 | Cite as

Efficient Tuning of Optical Properties and Morphology of Mesoscopic CdS via a Facile Route

  • Samia Aslam
  • Faiza Mustafa
  • Ayesha Jamil
  • Ghazanfar Abbas
  • Rizwan Raza
  • Muhammad Ashfaq Ahmad


A facile and simple synthetic route has been employed to synthesize rod-shaped optically efficient cadmium sulfide (CdS) mesoscopic structures using high concentrations of cetyl trimethyl ammonium bromide (CTAB) as the stabilizing agent. The mesoscopic structures were characterized using x-ray diffaractometer (XRD), scanning electron microscopy, UV–visible, photoluminescence (PL), and Fourier transform and infrared (FTIR) spectroscopy. It was found that, if the concentration of CTAB is significantly higher than its critical micelle concentration, the nucleation of CdS mesoscopic structures resulted in rod-like structures. The size of the mesoscopic structures initially increased and then decreased with band gaps 2.5–2.7 eV. XRD analysis showed that the samples had a pure cubic phase confirming the particle size. The values of Urbach energy for the absorption tail states were determined and found to be in agreement with the single crystal. PL spectra showed sharp green emission peaks in the 530-nm to 560-nm wavelength range. FTIR spectra showed the adsorption mode of CTAB onto the CdS mesoscopic structures. A possible mechanism of formation of rod-shaped CdS mesoscopic structures is also elucidated.


CdS semiconductors optical properties quantum confinement optical materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Zhou, Y. Geng, Q. Chen, J. Xu, N. Huang, Y. Gan, and L. Zhou, Mater. Lett. 172, 171 (2016).CrossRefGoogle Scholar
  2. 2.
    C.V. Gopi, M. Venkata-Haritha, S. Kim, and H.J. Kim, RSC Adv. 5, 2963 (2015).CrossRefGoogle Scholar
  3. 3.
    Y. Mo, Y. Tang, F. Gao, J. Yang, and Y. Zhang, Ind. Eng. Chem. Res. 51, 5995 (2012).CrossRefGoogle Scholar
  4. 4.
    G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, and E.H. Sargent, Nature 442, 180 (2006).CrossRefGoogle Scholar
  5. 5.
    Y. Guo, L. Jiang, L. Wang, X. Shi, Q. Fang, L. Yang, and C. Shan, Mater. Lett. 74, 26 (2012).CrossRefGoogle Scholar
  6. 6.
    T. Shanmugapriya, R. Vinayakan, K.G. Thomas, and P. Ramamurthy, CrystEngComm 13, 2340 (2011).CrossRefGoogle Scholar
  7. 7.
    Y. Zou, D. Li, and D. Yang, Nanoscale Res. Lett. 6, 374 (2011).CrossRefGoogle Scholar
  8. 8.
    K.D. Nisha, M. Navaneethan, Y. Hayakawa, S. Ponnusamy, and C. Muthamizhchelvan, Mater. Chem. Phys. 136, 1038 (2012).CrossRefGoogle Scholar
  9. 9.
    W. Zhang, H. Zhang, and X. Zhong, RSC Adv. 3, 17477 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Mridha and D. Basak, Phys. Status Solidi A 206, 1515 (2009).CrossRefGoogle Scholar
  11. 11.
    D.N. Rubingh and P.M. Holland, Surfactant science series (New York: M. Dekker, 1991), p. 525.Google Scholar
  12. 12.
    A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, and P. Yang, Nano Lett. 15, 4096 (2015).CrossRefGoogle Scholar
  13. 13.
    K. Wu, Y. Du, H. Tang, Z. Chen, and T. Lian, J. Am. Chem. Soc. 137, 10224 (2015).CrossRefGoogle Scholar
  14. 14.
    R. Narayanan, M. Deepa, and A.K. Srivastava, Phys. Chem. Chem. Phys. 14, 767 (2012).CrossRefGoogle Scholar
  15. 15.
    I.H. Arellano, J. Mangadlao, I.B. Ramiro, and K.F. Suazo, Mater. Lett. 64, 785 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Kumar, M. Gradzielski, and S.K. Mehta, RSC Adv. 3, 2662 (2013).CrossRefGoogle Scholar
  17. 17.
    G. Pandey and S. Dixit, J. Phys. Chem. C 115, 17633 (2011).CrossRefGoogle Scholar
  18. 18.
    N. Gonçalves, J. Carvalho, Z. Lima, and J. Sasaki, Mater. Lett. 72, 36 (2012).CrossRefGoogle Scholar
  19. 19.
    B. Pejova, Mater. Chem. Phys. 119, 367 (2010).CrossRefGoogle Scholar
  20. 20.
    A. Podborska, B. Gaweł, L. Pietrzak, I.B. Szymańska, J.K. Jeszka, W. łasocha, and K. Szaciłowski, J. Phys. Chem. C 113, 6774 (2009).CrossRefGoogle Scholar
  21. 21.
    A.E. Rakhshani, J. Phys. Condens. Matter 12, 4391 (2000).CrossRefGoogle Scholar
  22. 22.
    V. Singh and P. Chauhan, J. Phys. Chem. Solids 70, 1074 (2009).CrossRefGoogle Scholar
  23. 23.
    Z. Lin, J.J. Cai, L.E. Scriven, and H.T. Davis, J. Phys. Chem. 98, 5984 (1994).CrossRefGoogle Scholar
  24. 24.
    Z. Wang and R.G. Larson, J. Phys. Chem. B 113, 13697 (2009).CrossRefGoogle Scholar
  25. 25.
    N. Vlachy, M. Drechsler, J. Verbavatz, D. Touraud, and W. Kunz, J. Colloid Interface Sci. 319, 542 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Samia Aslam
    • 1
  • Faiza Mustafa
    • 1
  • Ayesha Jamil
    • 1
  • Ghazanfar Abbas
    • 1
  • Rizwan Raza
    • 1
  • Muhammad Ashfaq Ahmad
    • 1
  1. 1.Department of PhysicsCOMSATS Institute of Information TechnologyLahorePakistan

Personalised recommendations