Electrical Properties of Bismuth/Lithium-Cosubstituted Strontium Titanate Ceramics

Article
  • 8 Downloads

Abstract

Sr(1−x)(Bi,Li) x TiO3 compound was prepared via a solid-state reaction route with microwave heating of the starting materials. X-ray diffraction analysis revealed pure perovskite phase without formation of any secondary phases. The electrical conductivity was studied as a function of temperature and frequency. The experimental results indicate that the alternating-current (AC) conductivity increased with frequency, following the Jonscher power law. To interpret the possible mechanism for electrical conduction, the correlated barrier hopping model was applied. The effect of temperature and the Bi/Li concentration on the electrical resistivity was studied. The results showed that the electrical resistivity decreased with increasing temperature, which could be due to increased thermal energy of electrons. Also, the electrical resistivity decreased with increase in the amount of Bi and Li, which could be due to increased concentration of structural defects, which could increase the number of either electrons or holes available for conduction. A single semicircular arc corresponding to a single relaxation process was observed for all the investigated ceramics, suggesting a grain contribution to the total resistance in these materials. Arrhenius plots were used to obtain the activation energy for the samples.

Keywords

Cosubstitution electrical conductivity electrical resistivity frequency exponent activation energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.H. Chan, R.K. Sharma, and D.M. Smyth, J. Electrochem. Soc. 128, 1762 (1981).CrossRefGoogle Scholar
  2. 2.
    N.G. Eror and U. Balachandran, J. Am. Ceram. Soc. 64, 426 (1982).CrossRefGoogle Scholar
  3. 3.
    H.P.R. Frederikse, W.R. Thurber, and W.R. Hosler, Phys. Rev. A 134, 442 (1964).CrossRefGoogle Scholar
  4. 4.
    L.C. Walters and R.E. Grance, J. Phys. Chem. Solids 28, 239 (1967).CrossRefGoogle Scholar
  5. 5.
    X. Zhou, T. Smensen, and Y. Xu, Sens. Actuat. B 41, 177 (1997).CrossRefGoogle Scholar
  6. 6.
    P.C. Joshi and S.B. Krupendhi, Appl. Phys. Lett. 61, 1525 (1992).CrossRefGoogle Scholar
  7. 7.
    P. Maass, M. Meyer, and A. Bunde, Phys. Rev. B 51, 8164 (1995).CrossRefGoogle Scholar
  8. 8.
    J.C. Dyre, J. Appl. Phys. 64, 2456 (1988).CrossRefGoogle Scholar
  9. 9.
    K. Funke, Prog. Solid State Chem. 22, 111 (1993).CrossRefGoogle Scholar
  10. 10.
    S.R. Elliott and A.P. Owens, Philos. Mag. B 60, 777 (1989).CrossRefGoogle Scholar
  11. 11.
    A.R. Long, Adv. Phys. 31, 553 (1982).CrossRefGoogle Scholar
  12. 12.
    M. Le Stanguennec and S.R. Elliott, Solid State Ion. 73, 199 (1994).CrossRefGoogle Scholar
  13. 13.
    D.L. Sidebottom, P.F. Green, and R.K. Brow, J. Non-Cryst. Solids 203, 300 (1996).CrossRefGoogle Scholar
  14. 14.
    S. Chakraborty, M. Sadhukhan, B.K. Chaudhuri, U.H. Mori, and H. Sakata, Mater. Chem. Phys. 50, 219 (1997).CrossRefGoogle Scholar
  15. 15.
    A.K. Jonscher, Nature 267, 673 (1977).CrossRefGoogle Scholar
  16. 16.
    A.K. Jonscher, J. Mol. Liq. 86, 259 (2000).CrossRefGoogle Scholar
  17. 17.
    M.S. Alkathy, K.K. Bokinala, and K.C. James Raju, J. Mater. Sci. Mater. Electron. 27, 3175 (2016).CrossRefGoogle Scholar
  18. 18.
    K.P. Priyanka, J. Sunny, T. Smitha, E.M. Mohammed, and V. Thomas, J. Basic Appl. Phys. 2, 105 (2013).Google Scholar
  19. 19.
    S. Rajani, Indian J. Pure Appl. Phys. 31, 894 (1993).Google Scholar
  20. 20.
    S.R. Elliot, Philos. Mag. 36, 1291 (1977).CrossRefGoogle Scholar
  21. 21.
    S.R. Elliot, Philos. Mag. 37, 553 (1978).CrossRefGoogle Scholar
  22. 22.
    S.R. Elliot, Adv. Phys. 36, 135 (1987).CrossRefGoogle Scholar
  23. 23.
    D.W. Richerson, Third Edition Modern Ceramics Engineering, Properties, Processing and Use in Design (Boca Raton: CRC Press, 2005), p. 304.Google Scholar
  24. 24.
    M. Hashim, S. Kumar, S.E. Shirsath, E.M. Mohammed, H. Chung, and R. Kumar, Physica B 407, 4097 (2012).CrossRefGoogle Scholar
  25. 25.
    N.A. Hegab, M.A. Afifi, H.E. Atyia, and A.S. Farid, J. Alloys Compd. 477, 925 (2009).CrossRefGoogle Scholar
  26. 26.
    M.V. Raymond and D.M. Smyth, J. Phys. Chem. Solids 57, 1507 (1996).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations