Preparation and Enhanced Thermoelectric Performance of Cu2Se–SnSe Composite Materials

  • Zhi Peng
  • Danqi He
  • Xin Mu
  • Hongyu Zhou
  • Cuncheng Li
  • Shifang Ma
  • Pengxia Ji
  • Weikang Hou
  • Ping Wei
  • Wanting Zhu
  • Xiaolei Nie
  • Wenyu Zhao
Topical Collection: International Conference on Thermoelectrics 2017
  • 33 Downloads
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2017

Abstract

A series of p-type xCu2Se–SnSe (x = 0%, 0.10%, 0.15%, 0.20%, and 0.25%) composite thermoelectric materials have been prepared by the combination of ultrasonic dispersion and spark plasma sintering methods. The effects of secondary phase Cu2Se on the phase composition, microstructure, and thermoelectric properties of the composites were investigated. Microstructure characterization and elemental maps indicated Cu2Se grains uniformly distributed on the boundaries of the matrix. Transport measurements demonstrated that enhancement of the power factor and reduction of the thermal conductivity can be realized simultaneously by optimizing the adding content of Cu2Se. The highest ZT value of 0.51 at 773 K was achieved for the sample with x = 0.15%, increased by 24% compared with that of the SnSe matrix. These results demonstrate that optimizing the Cu2Se content can improve the thermoelectric performance of p-type SnSe polycrystalline materials.

Keywords

Composite thermoelectric material Cu2Se secondary phase polycrystalline SnSe thermoelectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  2. 2.
    D.M. Rowe, eds., Thermoelectrics and Its Energy Harvesting (Boca Raton: CRC Press, 2012).Google Scholar
  3. 3.
    D.M. Rowe, eds., Thermoelectrics Handbook. Macro to Nano (Boca Raton: CRC Press, 2006).Google Scholar
  4. 4.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  5. 5.
    C.L. Chen, H. Wang, Y.Y. Chen, T. Day, and G.J. Snyder, J. Mater. Chem. A 2, 11171 (2014).CrossRefGoogle Scholar
  6. 6.
    Y.B. Zhai, Q.S. Zhang, J. Jiang, T. Zhang, Y.K. Xiao, S.H. Yang, and G.J. Xu, J. Mater. Chem. A 1, 8844 (2013).CrossRefGoogle Scholar
  7. 7.
    Y.Z. Pei, H. Wang, and G.J. Snyder, Adv. Mater. 24, 6125 (2012).CrossRefGoogle Scholar
  8. 8.
    J. He, X.J. Tan, J.T. Xu, G.Q. Liu, H.Z. Shao, Y.J. Fu, X. Wang, Z. Liu, J.Q. Xu, H.C. Jiang, and J. Jiang, J. Mater. Chem. A 3, 19974 (2015).CrossRefGoogle Scholar
  9. 9.
    C.G. Fu, S.Q. Bai, Y.T. Liu, Y.S. Tang, L.D. Chen, X.B. Zhao, and T.J. Zhu, Nat. Commun. 6, 8144 (2015).CrossRefGoogle Scholar
  10. 10.
    W.Y. Zhao, Z.Y. Liu, P. Wei, Q.J. Zhang, W.T. Zhu, X.L. Su, X.F. Tang, J.H. Yang, Y. Liu, J. Shi, Y.M. Chao, S.Q. Lin, and Y.Z. Pei, Nat. Nanotech. 12, 55 (2017).CrossRefGoogle Scholar
  11. 11.
    Y.Z. Pei, J. Lensch-Falk, E.S. Toberer, D.L. Medlin, and G.J. Snyder, Adv. Funct. Mater. 21, 241 (2011).CrossRefGoogle Scholar
  12. 12.
    L.P. Hu, H.J. Wu, T.J. Zhu, C.G. Fu, J.Q. He, P.J. Ying, and X.B. Zhao, Adv. Energy Mater. 5, 1500411 (2015).CrossRefGoogle Scholar
  13. 13.
    K. Biswas, J.Q. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).CrossRefGoogle Scholar
  14. 14.
    L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Nature 508, 373 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Sassi, C. Candolfi, J.B. Vaney, V. Ohorodniichuk, P. Masschelein, A. Dauscher, and B. Lenoir, Appl. Phys. Lett. 104, 212105 (2014).CrossRefGoogle Scholar
  16. 16.
    T.R. Wei, G.J. Tan, X.M. Zhang, X.C.F. Wu, J.F. Li, V.P. Dravid, G.J. Snyder, and M.G. Kanatzidis, J. Am. Chem. Soc. 138, 8875 (2016).CrossRefGoogle Scholar
  17. 17.
    H.Q. Leng, M. Zhou, J. Zhao, Y.M. Han, and L.F. Li, RSC Adv. 6, 9112 (2016).CrossRefGoogle Scholar
  18. 18.
    E.K. Chere, Q. Zhang, K. Dahal, F. Cao, J. Mao, and Z.F. Ren, J. Mater. Chem. A 4, 1848 (2016).CrossRefGoogle Scholar
  19. 19.
    N.K. Singh, S. Bathula, B. Gahtori, K. Tyagi, D. Haranath, and A. Dhar, J. Alloys Compd. 668, 152 (2016).CrossRefGoogle Scholar
  20. 20.
    J.C. Li, D. Li, X.Y. Qin, and J. Zhang, Scr. Mater. 126, 6 (2017).CrossRefGoogle Scholar
  21. 21.
    Y.M. Han, J. Zhao, M. Zhou, X.X. Jiang, H.Q. Leng, and L.F. Li, J. Mater. Chem. A 3, 4555 (2015).CrossRefGoogle Scholar
  22. 22.
    T.R. Wei, C.F. Wu, X.Z. Zhang, Q. Tan, L. Sun, Y. Pan, and J.F. Li, Phys. Chem. Chem. Phys. 17, 30102 (2015).CrossRefGoogle Scholar
  23. 23.
    Y.J. Fu, J.T. Xu, G.Q. Liu, J.K. Yang, X.J. Tan, Z. Liu, H.M. Qin, H.Z. Shao, H.C. Jiang, B. Liang, and J. Jiang, J. Mater. Chem. C 4, 1201 (2016).CrossRefGoogle Scholar
  24. 24.
    D. Li, J.C. Li, X.Y. Qin, J. Zhang, H.X. Xin, C.J. Song, and L. Wang, Energy 116, 861 (2016).CrossRefGoogle Scholar
  25. 25.
    H.L. Liu, X. Shi, F.F. Xu, L.L. Zhang, W.Q. Zhang, L.D. Chen, Q. Li, C. Uher, T. Day, and G.J. Snyder, Nat. Mater. 11, 422 (2012).CrossRefGoogle Scholar
  26. 26.
    X.L. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D.W. Yang, H. Chi, X.F. Tang, Q.J. Zhang, and C. Uher, Nat. Commun. 5, 4908 (2014).CrossRefGoogle Scholar
  27. 27.
    H.F. Guo, H.X. Xin, X.Y. Qin, J. Zhang, D. Li, Y.Y. Li, C.J. Song, and C. Li, J. Alloys Compd. 689, 87 (2016).CrossRefGoogle Scholar
  28. 28.
    T. Ohtani, Y. Tachibana, J. Ogura, T. Miyake, Y. Okada, and Y. Yokota, J. Alloys Compd. 279, 136 (1998).CrossRefGoogle Scholar
  29. 29.
    J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).CrossRefGoogle Scholar
  30. 30.
    Q.Y. Zhang, H. Wang, W.S. Liu, H.Z. Wang, B. Yu, Q. Zhang, Z.T. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, and Z.F. Ren, Energy Environ. Sci. 5, 5246 (2012).CrossRefGoogle Scholar
  31. 31.
    S. Wang, J. Yang, T. Toll, J. Yang, W. Zhang, and X. Tang, Sci. Rep. 5, 10136 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Zhi Peng
    • 1
  • Danqi He
    • 1
  • Xin Mu
    • 1
  • Hongyu Zhou
    • 1
  • Cuncheng Li
    • 1
  • Shifang Ma
    • 1
  • Pengxia Ji
    • 1
  • Weikang Hou
    • 1
  • Ping Wei
    • 1
  • Wanting Zhu
    • 1
  • Xiaolei Nie
    • 1
  • Wenyu Zhao
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations