Journal of Electronic Materials

, Volume 47, Issue 7, pp 3666–3677 | Cite as

Phase Equilibria and Thermodynamic Descriptions of Ag-Ge and Ag-Ge-Ni Systems

  • V. B. Rajkumar
  • Sinn-Wen Chen


Gibbs energy modeling of Ag-Ge and Ag-Ge-Ni systems was done using the calculation of the phase diagram method with associated data from this work and relevant literature information. In the Ag-Ge system, the solidus temperatures of Ag-rich alloys are measured using differential thermal analysis, and the energy of mixing for the FCC_A1 phase is calculated using the special quasi-random structures technique. The isothermal sections of the Ag-Ge-Ni system at 1023 K and 673 K are also experimentally determined. These data and findings in the relevant literature are used to model the Gibbs energy of the Ag-Ge and Ag-Ge- Ni systems. A reaction scheme and a liquidus projection of the Ag-Ge-Ni system are determined.


Differential thermal analysis (DTA) x-ray diffraction (XRD) electron probe micro-analysis (EPMA) special quasi random structures (SQS) Vienna ab initio simulation package (VASP) calculation of phase diagram (Calphad) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The Ministry of Science and Technology Taiwan (MOST 104-281-E-007-054) sponsored this project. The authors express their thanks to Dr. Jean-Claude Crivello, Chimie Metallurgigue des Terres Rares Institut de Chimie et des Materiaux Paris-Est, UMR 7182, CNRS – Universite Paris Est 2-8 rue Henri Dunant 94320 Thiais, for his email interaction regarding ZenGen. Also, special thanks to Dr. Chi-Wing Tsang and Dr. Michael Klinge of Springer Materials (product management), Database Research Group, Springer Nature, Tiergartenstrasse 17, 69121 Heidelberg, Germany for providing the key literature references of the Ag-Ge-Ni system and its sub-systems.

Supplementary material

11664_2018_6216_MOESM1_ESM.pdf (62 kb)
Supplementary material 1 (PDF 62 kb)


  1. 1.
    S.W. Chen, J.C. Wang, and L.C. Chen, Intermetallics 83, 55 (2017).CrossRefGoogle Scholar
  2. 2.
    X.J. Liu, F. Gao, C.P. Wang, and K. Ishida, J. Electron. Mater. 37, 210 (2008).CrossRefGoogle Scholar
  3. 3.
    V.B. Rajkumar and S.W. Chen, J. Electron. Mater. 46, 2282 (2017).CrossRefGoogle Scholar
  4. 4.
    Y.Q. Liu, D.J. Ma, and Y. Du, J. Alloys Compd. 491, 63 (2010).CrossRefGoogle Scholar
  5. 5.
    S. Jin, C. Leinenbach, J. Wang, L.I. Duarte, S. Delsante, G. Borzone, A. Scott, and A. Watson, Calphad 38, 23 (2012).CrossRefGoogle Scholar
  6. 6.
    P.Y. Chevalier, Thermochim. Acta 130, 25 (1988).CrossRefGoogle Scholar
  7. 7.
    S. Hassam, M. Gambino, M. Gaune-escard, J.P. Bros, and J. Ågren, Metall. Trans. A 19, 409 (1988).CrossRefGoogle Scholar
  8. 8.
    J. Wang, Y.J. Liu, C.Y. Tang, L.B. Liu, H.Y. Zhou, and Z.P. Jin, Thermochim. Acta 512, 240 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Hansen and K. Anderko, Constitution of binary alloys, 2nd ed. (New York: McGraw-Hill, 1958).Google Scholar
  10. 10.
    M. Hansen, R.P. Elliott, and F.A. Shunk, Constitution of binary alloys (New York: McGraw-Hill, 1965) First-supplement.Google Scholar
  11. 11.
    R.P. Elliott and F.A. Shunk, Bull. Alloy Phase Diagr. 1, 47 (1980).CrossRefGoogle Scholar
  12. 12.
    R.W. Olesinski and G.J. Abbaschian, Bull. Alloy Phase Diagr. 9, 58 (1988).CrossRefGoogle Scholar
  13. 13.
    T.B. Massalski, H. Okamoto, and P.R. Subramanian, in Binary Alloy Phase Diagram, 2nd edn, ed. by L. Kacprzak (ASM International, Materials Park, Ohio), pp. 39–42.Google Scholar
  14. 14.
    B. Predel, Landolt-Börnstein-Group IV Physical Chemistry 5a, 1 (1991).Google Scholar
  15. 15.
    H. Kazemi and L. Weber, Thermochim. Acta 544, 57 (2012).CrossRefGoogle Scholar
  16. 16.
    E. Oktay, Mater. Tech. 81, 101 (1993).CrossRefGoogle Scholar
  17. 17.
    P. Duwez, R.H. Willens, and W. Klement Jr., J. Appl. Phys. 31, 1137 (1960).CrossRefGoogle Scholar
  18. 18.
    W. Klement Jr., J. Inst. Met. 90, 27 (1961).Google Scholar
  19. 19.
    M. Moss, D.L. Smith, and R.A. Lefever, Appl. Phys. Lett. 5, 120 (1964).CrossRefGoogle Scholar
  20. 20.
    T.R. Anantharaman, H.L. Luo, and W. Klement Jr., Nature 210, 1040 (1966).CrossRefGoogle Scholar
  21. 21.
    P. Ramachandrarao and T.R. Anantharaman, Trans. Metall. Soc. AIME 245, 886 (1969).Google Scholar
  22. 22.
    P. Ramachandrarao and T.R. Anantharaman, Philos. Mag. 20, 201 (1969).CrossRefGoogle Scholar
  23. 23.
    P. Furrer, T.R. Anantharaman, and H. Warlimot, Philos. Mag. 21, 873 (1970).CrossRefGoogle Scholar
  24. 24.
    P. Ramachandrarao, P.R. Rao, and T.R. Anantharaman, Z. Metallkd. 61, 471 (1970).Google Scholar
  25. 25.
    T.R. Anantharaman, J. Sci. Ind. Res. (India) 31, 415 (1972).Google Scholar
  26. 26.
    M. Laridjani, P. Ramachandrarao, and R.W. Cahn, J. Mater. Sci. 7, 627 (1972).CrossRefGoogle Scholar
  27. 27.
    H.O.K. Kirchner, P. Ramachandrarao, and G.A. Chadwick, Philos. Mag. 25, 1151 (1972).CrossRefGoogle Scholar
  28. 28.
    H.J. Bunge, Z. Metallkd. 67, 720 (1976).Google Scholar
  29. 29.
    S.C. Agarwal and H. Herman, J. Mater. Sci. 12, 2021 (1977).CrossRefGoogle Scholar
  30. 30.
    V. Dutta, P. Nath, V.D. Vankar, and K.L. Chopra, Phys. Status Solidi (a) 49, 379 (1978).CrossRefGoogle Scholar
  31. 31.
    S.K. Pal, S.K. Halder, and S.P. Sen Gupta, Acta Cryst. 34, 140 (1978).CrossRefGoogle Scholar
  32. 32.
    G.V. Chipenko and V.F. Degtyareva, Sov. Phys. Solid State 26, 735 (1984).Google Scholar
  33. 33.
    T.R. Briggs, R.O. McDuffie, and L.H. Willisford, J. Phys. Chem. 33, 1080 (1929).CrossRefGoogle Scholar
  34. 34.
    H. Maucher, Forschungsarb. Metallkd. Röntgenmet. 20, 1 (1936).Google Scholar
  35. 35.
    E.A. Owen and V.W. Rowlands, J. Inst. Met. 66, 361 (1940).Google Scholar
  36. 36.
    D.D. Pollock, Trans. Metall. Soc. AIME 239, 1768 (1967).Google Scholar
  37. 37.
    S. Barat and J.K. Mukherjee, Indian J. Technol. 13, 510 (1975).Google Scholar
  38. 38.
    B. Predel and H. Bankstahl, J. Less-Common Met. 43, 191 (1975).CrossRefGoogle Scholar
  39. 39.
    V.N. Eremenko, G.M. Lukashenko, and V.L. Pritula, Izv. Akad. Nauk SSSR Neorgan. Mater. 3, 1584 (1967).Google Scholar
  40. 40.
    L. Martin-Garin, C. Chatillon, and M. Allibert, J. Less-Common Met. 63, 9 (1979).CrossRefGoogle Scholar
  41. 41.
    K. Itagaki and A. Yazawa, J. Jpn. Inst. Met. 32, 1294 (1968).CrossRefGoogle Scholar
  42. 42.
    R. Castanet, M. Laffitte, and C.R. Hebd, Séanc. Acad. Sci. Sér. C. 267, 204 (1968).Google Scholar
  43. 43.
    R. Castanet, Y. Claire, and M. Laffitte, J. Chim. Phys. 66, 1276 (1969).CrossRefGoogle Scholar
  44. 44.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Materials Park: ASM International, 1973).Google Scholar
  45. 45.
    O. Uemura and S. Ikeda, Trans. Jpn. Inst. Met. 14, 351 (1973).CrossRefGoogle Scholar
  46. 46.
    B. Predel and D.W. Stein, Z. Naturforsch. A 26, 722 (1971).CrossRefGoogle Scholar
  47. 47.
    G.I. Batalin, E.A. Beloborodova, and V.A. Stukalo, Russ. J. Phys. Chem. 45, 1533 (1971).Google Scholar
  48. 48.
    B. Predel and U. Schallner, Z. Naturforsch. A 27, 1098 (1972).CrossRefGoogle Scholar
  49. 49.
    B. Predel and U. Schallner, Z. Metallkd. 63, 341 (1972).Google Scholar
  50. 50.
    K.T. Jacob, C.B. Alcock, and J.C. Chan, Acta Mater. 22, 545 (1974).CrossRefGoogle Scholar
  51. 51.
    V.D. Ivanova and B.P. Burylev, Izv. Akad. Nauk SSSR Met. 5, 167 (1972).Google Scholar
  52. 52.
    B.P. Burylev and V.D. Ivanova, Zhur. Fiz. Khim. 50, 2140 (1976).Google Scholar
  53. 53.
    W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko, DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, Special Publications 960-15. Natl. Inst. Stand. Technol. (NIST) Recommended Practice Guide, Washington, USA, November 2006.Google Scholar
  54. 54.
    S.-W. Chen, C.-C. Huang, and J.-C. Lin, Chem. Eng. Sci. 50, 417 (1995).CrossRefGoogle Scholar
  55. 55.
    J.C. Crivello, R. Souques, N. Dupin, and J.M. Joubert, Calphad 51, 233 (2015).CrossRefGoogle Scholar
  56. 56.
    G. Kresse, VASP Software (Computational Materials Physics, University of Vienna, Wien, Austria, 1995). Accessed 28 Jan 2016.
  57. 57.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1997).CrossRefGoogle Scholar
  58. 58.
    G. Kresse and J. Furthmüller, Phys. Rev. B. 54, 11169 (1996).CrossRefGoogle Scholar
  59. 59.
    P. Pulay, Chem. Phys. Lett. 73, 393 (1980).CrossRefGoogle Scholar
  60. 60.
    M. Methfessel and A.T. Paxton, Phys. Rev. B. 40, 3616 (1989).CrossRefGoogle Scholar
  61. 61.
    J.C. Crivello, R. Souques, A. Breidit, and J.M. Joubert, Zengen: A Tool to Generate Ordered Configurations for Systematic DFT Calculations (Institut de Chimie et des Matériaux Paris-Est, ICMPE, CNRS-UPEC, Thiais, France, 2015) Accessed 15 Oct 2016.
  62. 62.
    P.E. Blöchl, O. Jepsen, and O.K. Andersen, Phys. Rev. B. 49, 16223 (1989).CrossRefGoogle Scholar
  63. 63.
    J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Calphad 26, 273 (2002).CrossRefGoogle Scholar
  64. 64.
    H. Lukas, S.G. Fries, and B.O. Sundman, Computational Thermodynamics: The CALPHAD Method (New York: Cambridge University Press, 2007), pp. 293–294.CrossRefGoogle Scholar
  65. 65.
    F.N. Rhines, Phase Diagrams in Metallurgy (New York: McGraw-Hill, 1956).Google Scholar
  66. 66.
    W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, Calphad 33, 328 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations