Skip to main content
Log in

Preparation of Graphene–Zinc Oxide Nanostructure Composite for Carbon Monoxide Gas Sensing

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A simple method to synthesize graphene–zinc oxide nanocomposite has been developed. A reduced graphene oxide–ZnO nanocomposite was prepared using a reflux method with ethylene glycol as medium. X-ray diffraction analysis, scanning electron microscopy, energy-dispersive spectrometry, and nitrogen adsorption–desorption measurements were used to characterize the resulting composite materials. The highest response of about 98% was observed when using pure ZnO at 300°C, while the second highest sensor response of about 96% was achieved by graphene–ZnO with 1:3 composition. It was found that the graphene–zinc oxide hybrid has potential to improve sensor performance at low temperature. The graphene–ZnO hybrid with 1:3 composition showed good response of 36% at 125°C, an operating temperature at which pure ZnO showed no response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Mustafic, P. Jabre, C. Caussin, M.H. Murad, S. Escolano, M. Tafflet, M.-C. Perier, E. Marijon, D. Vernerey, J.-P. Empana, and X. Jouven, JAMA 307, 713 (2012).

    Article  Google Scholar 

  2. M. Vrijheid, D. Martinez, I. Aguilera, M. Bustamante, F. Ballester, M. Estarlich, A.F. Somoano, M. Guxens, N. Lertxundi, M.D. Martinez, A. Tardon, and J. Sunyer, Epidemiology 23, 23 (2012).

    Article  Google Scholar 

  3. R.J. Levy, Carbon Monoxide Anesth. 123, 670 (2016).

    Google Scholar 

  4. K.R. Amin and A. Bid, Curr. Sci. 107, 430 (2014).

    Google Scholar 

  5. F. Schedin, A. Geim, S. Morozov, E. Hill, P. Blake, M. Katsnelson, and K. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  Google Scholar 

  6. C.A. Betty, Mater. Sci. Technol. 32, 375 (2016).

    Article  Google Scholar 

  7. B. Yuliarto, M.F. Ramadhani, Nugraha, N.L.W. Septiani, and K.A. Hamam, J. Mater. Sci. 52, 4543 (2017).

    Article  Google Scholar 

  8. N.L.W. Septiani, B. Yuliarto, Nugraha, and H.K. Dipojono, Appl. Phys. A 123, 1 (2017).

    Google Scholar 

  9. B. Yuliarto, L. Nulhakim, M.F. Ramadhani, M. Iqbal, S. Nugraha, and A. Nuruddin, IEEE Sensors J. 15, 4114 (2015).

    Article  Google Scholar 

  10. H.J. Yoon, D.H. Jun, J.H. Yang, Z. Zhou, S.S. Yang, and M.M.-C. Cheng, Sensors Actuators B 157, 310 (2011).

    Article  Google Scholar 

  11. H. Jayatissa, Solid State Electron. 2012, 159 (2012).

    Google Scholar 

  12. K. Anand, O. Singh, and R.C. Singh, Appl. Phys. A 116, 1141 (2014).

    Article  Google Scholar 

  13. S. Liu, B. Yu, H. Zhang, T. Fei, and T. Zhang, Sensors Actuators B 202, 272 (2014).

    Article  Google Scholar 

  14. R.K. Joshi, Q. Hu, F. Alvi, N. Joshi, and A. Kumar, J. Phys. Chem. 113, 16199 (2009).

    Google Scholar 

  15. G. Singh, A. Choudhary, D. Haranath, A.G. Joshi, N. Singh, S. Singh, and R. Pasricha, Carbon 50, 385 (2012).

    Article  Google Scholar 

  16. X. Liu, L. Pan, Q. Zhao, T. Lv, G. Zhu, T. Chen, T. Lu, Z. Sun, and C. Sun, Chem. Eng. J. 183, 238 (2012).

    Article  Google Scholar 

  17. K.L. Foo, U. Hashim, K. Muhammad, and C.H. Voon, Nanoscale Res. Lett. 9, 429 (2014).

    Article  Google Scholar 

  18. M. Nasrollahzadeh, B. Jaleh, and A. Jabbari, RSC Adv. 4, 36713 (2014).

    Article  Google Scholar 

  19. S. Pei and H.-M. Cheng, Carbon 50, 3210 (2012).

    Article  Google Scholar 

  20. G. Lu, L.E. Ocola, and J. Chen, Appl. Phys. Lett. 94, 083111-1 (2009).

    Google Scholar 

  21. J.D. Fowler, M.J. Allen, V.C. Tung, Y. Yang, R.B. Kaner, and B.H. Weiller, ACS Nano 3, 301 (2009).

    Article  Google Scholar 

  22. M. Qazi, T. Vogt, and G. Koley, Appl. Phys. Lett. 91, 233101-1 (2007).

    Google Scholar 

  23. D.-T. Phan and G.-S. Chung, J. Phys. Chem. Solids 74, 1509 (2013).

    Article  Google Scholar 

  24. C.I.L. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, and T.A.P. Rocha-Santos, TrAC Trends Anal. Chem. 91, 53 (2017).

    Article  Google Scholar 

  25. S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathann, and A. Abdala, Sensors Actuators B 218, 160 (2015).

    Article  Google Scholar 

  26. F.-L. Meng, Z. Guo, and X.-J. Huang, TrAC Trends Anal. Chem. 68, 37 (2015).

    Article  Google Scholar 

  27. E. Lackner, J. Krainer, R.W. Teubenbacher, F. Sosada, M. Deluca, C. Gspan, K. Rohracher, E. Wachmann, and A. Kock, Mater. Today Proc. 4, 7128 (2017).

    Article  Google Scholar 

  28. S.K. Lim, S.H. Hong, S.-H. Hwang, W.M. Choi, S. Kim, H. Park, and M.G. Jeong, J. Mater. Sci. Technol. 31, 639 (2015).

    Article  Google Scholar 

  29. S.K. Lim, S.-H. Hwang, D. Chang, and S. Kim, Sensors Actuators B 149, 28 (2010).

    Article  Google Scholar 

  30. C. Balamurugan, S. Arunkumar, and D.-W. Lee, Sensors Actuators B 234, 155 (2016).

    Article  Google Scholar 

  31. D. Susanti, A.S. Perdana, H. Purwaningsih, L. Noerochim, and G.E. Kusuma, AIP Conf. Proc. 1586, 14 (2014).

    Article  Google Scholar 

  32. C.R. Michel, A.H. Martinez-Preciado, R. Parra, C.M. Aldao, and M.A. Ponce, Sensors Actuators B 202, 1220 (2014).

    Article  Google Scholar 

  33. M. Shojaee, Sh. Nasresfahani, and M.H. Sheikhi, Sensors Actuators B 254, 457 (2018).

    Article  Google Scholar 

  34. H.W. Kim, Y.J. Kwon, A. Mirzaei, S.Y. Kang, M.S. Choi, J.H. Bang, and S.S. Kim, Sensors Actuators B 249, 590 (2017).

    Article  Google Scholar 

  35. H. Tai, Z. Yuan, W. Zheng, Z. Ye, C. Liu, and X. Du, Nanoscale Res. Lett. 11, 130 (2016).

    Article  Google Scholar 

  36. T. Wang, Z. Sun, D. Huang, Z. Yang, Q. Ji, N. Hu, G. Yin, D. He, H. Wei, and Y. Zhang, Sensors Actuators B 252, 284 (2017).

    Article  Google Scholar 

  37. K. Anand, O. Singh, M.P. Singh, J. Kaur, and R.C. Singh, Sensors Actuators B 195, 409 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Yuliarto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muchtar, A.R., Septiani, N.L.W., Iqbal, M. et al. Preparation of Graphene–Zinc Oxide Nanostructure Composite for Carbon Monoxide Gas Sensing. J. Electron. Mater. 47, 3647–3656 (2018). https://doi.org/10.1007/s11664-018-6213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6213-x

Keywords

Navigation