Skip to main content

Advertisement

Log in

Electronic Structure, Optical and Transport Properties of Double Perovskite La2NbMnO6: A Theoretical Understanding from DFT Calculations

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

A Correction to this article was published on 15 May 2018

This article has been updated

Abstract

Double perovskite La2NbMnO6 was systematically studied using the first-principles calculations. The structural, electronic, optical and transport properties of this compound were calculated. Spin resolved band structure predicted this material as a half-metal with an energy gap of 3.75 eV in spin down state. The optical coefficients including optical conductivity, reflectivity and electron energy loss are calculated for photon energy up to 30.00 eV to understand the optical response of this perovskite. The strong absorption of all the ultraviolet and infrared frequencies of the spectrum by this material may suggest the potential application of this material for the optoelectronic devices in ultraviolet and infra-red region. Also, the thermoelectric properties with a speculation from the half-metallic electronic structure are reported. Subsequently, the Seebeck coefficient, electrical and thermal conductivity coefficients are calculated to predict the thermoelectric figure of merit (zT), the maximum of which is found out to be 0.14 at 800 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

  • 15 May 2018

    Authors Khursheed Ahmad Parrey and Shakeel Ahmad Khandy included the names of Asad Niazi, Anver Aziz, and S. G. Ansari as co-authors of this article without their permission.

References

  1. A.H. Reshak, Phys. Chem. Chem. Phys. 6, 92887 (2016).

    Google Scholar 

  2. Y.P. Liu, H.R. Fuh, and Y.K. Wang, Comput. Mater. Sci. 92, 63 (2014).

    Article  Google Scholar 

  3. K.W. Lee and W.E. Pickett, Phys. Rev. B 77, 115101 (2008).

    Article  Google Scholar 

  4. S.A. Khandy and D. Gupta, RSC Adv. 6, 97641 (2016).

    Article  Google Scholar 

  5. A.H. Reshak, RSC Adv. 4, 63137 (2014).

    Article  Google Scholar 

  6. S.A. Khandy and D.C. Gupta, RSC Adv. 6, 48009 (2016).

    Article  Google Scholar 

  7. A. Souidi, S. Bentata, W. Benstaali, B. Bouadjemi, A. Abbad, and T. Lantri, Mater. Sci. Semicond. Proc. 43, 196 (2016).

    Article  Google Scholar 

  8. M. Musa Saad H.-E, Comput. Mater. Sci. 111, 481 (2016).

    Article  Google Scholar 

  9. S.A. Khandy and D.C. Gupta, Mater. Chem. Phys. 198, 380 (2017).

    Article  Google Scholar 

  10. S.A. Khandy and D.C. Gupta, J. Magn. Magn. Mater. 441, 166 (2017).

    Article  Google Scholar 

  11. V.L. Joseph Joly, Y.B. Khollam, P.A. Joy, C.S. Gopinath, and S.K. Date, J. Phys.: Condens. Matter 13, 11001 (2001).

    Google Scholar 

  12. H. Kato, T. Okuda, Y. Okimoto, Y. Tomioka, Y. Takenoya, A. Ohkubo, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 81, 328 (2002).

    Article  Google Scholar 

  13. T.S. Chan, R.S. Liu, G.Y. Guo, S.F. Hu, J.G. Lin, J.M. Chen, and C.R. Chang, Solid State Commun. 133, 265 (2005).

    Article  Google Scholar 

  14. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395, 677 (1998).

    Article  Google Scholar 

  15. N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, and S.-W. Cheong, Nature 429, 392 (2004).

    Article  Google Scholar 

  16. M. Azuma, K. Takata, T. Saito, S. Ishiwata, Y. Shimakawa, and M. Takano, J. Am. Chem. Soc. 127, 8889 (2005).

    Article  Google Scholar 

  17. H. Das, M. De Raychaudhury, and T. Saha-Dasgupta, Appl. Phys. Lett. 92, 201912 (2008).

    Article  Google Scholar 

  18. N.S. Rogado, J. Li, A.W. Sleight, and M.A. Subramanian, Adv. Mater. Weinheim Ger. 17, 2225 (2005).

    Article  Google Scholar 

  19. N.-N. Zu, R. Li, Y.-H. Zheng, and L. Chen, Chin. Phys. Lett. 34, 107101 (2017).

    Article  Google Scholar 

  20. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna: Vienna University of Technology, 2001).

    Google Scholar 

  21. J.P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  Google Scholar 

  22. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, and A.P. Sutton, Phys. Rev. B Condens. Matter Mater. Phys. 57, 1505 (1998).

    Article  Google Scholar 

  23. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  24. S.A. Khandy and D.C. Gupta, J. Electron. Mater. 47, 436 (2018).

    Article  Google Scholar 

  25. W.-E. Pickett, Phys. Rev. B 57, 10613 (1998).

    Article  Google Scholar 

  26. D.P. Rai, et al., Mater. Chem. Phys. 186, 620 (2017).

    Article  Google Scholar 

  27. B. Amin, I. Ahmad, M. Maqbool, S. Goumrisaid, and R. Ahmad, J. Appl. Phys. 109, 023109 (2011).

    Article  Google Scholar 

  28. F. Wooten, Optical Properties of Solids (New York: Academic Press, 1972).

    Google Scholar 

  29. L. Li, Y.-J. Wang, D.-X. Liu, C.-G. Ma, M.G. Brik, A. Suchocki, M. Piasecki, and A.H. Reshak, Mater. Chem. Phys. 188, 39 (2017).

    Article  Google Scholar 

  30. N. Erum and M.A. Iqbal, Mater. Res. Express 4, 025904 (2017).

    Article  Google Scholar 

  31. S.A. Khandy and D.C. Gupta, J. Electron. Mater. 46, 5531 (2017).

    Article  Google Scholar 

  32. S. Yousuf and D.C. Gupta, Mater. Chem. Phys. 192, 33 (2017).

    Article  Google Scholar 

  33. A.J. Hong, L. Li, R. He, J.J. Gong, Z.B. Yan, K.F. Wang, J.M. Liu, and Z.F. Ren, Sci. Rep. 6, 22778 (2016).

    Article  Google Scholar 

  34. T.M. Bhat and D.C. Gupta, J. Magn. Magn. Mater. 435, 173 (2017).

    Article  Google Scholar 

  35. M. Saxena and T. Maiti, J. Alloys Compd. 710, 472 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, A. Laref, wants to acknowledge the “Research Center of Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Ahmad Khandy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parrey, K.A., Khandy, S.A., Islam, I. et al. Electronic Structure, Optical and Transport Properties of Double Perovskite La2NbMnO6: A Theoretical Understanding from DFT Calculations. J. Electron. Mater. 47, 3615–3621 (2018). https://doi.org/10.1007/s11664-018-6207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6207-8

Keywords

Navigation