Skip to main content
Log in

Special Important Aspects of the Thomson Effect

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A comprehensive study of the mechanisms of heating and cooling originating from an electrical current in semiconductor devices is reported. The variation in temperature associated with the Peltier effect is not related to the presence of heat sources and sinks if the heat flux is correctly determined. The Thomson effect is commonly regarded as a heat source/sink proportional to the Thomson coefficient, which is added to the Joule heating. In the present work, we will show that this formulation of the Thomson effect is not sufficiently clear. When the heat flux is correctly defined, the Thomson heat source/sink is proportional to the Seebeck coefficient. In the conditions in which the Peltier effect takes place, the temperature gradient is created, and, consequently, the Thomson effect will occur naturally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.P. Hogan, in Encyclopedia of Physical Science and Technology, ed. by R.A. Meyers (Elsevier, Amsterdam, 2001).

    Google Scholar 

  2. C.L. Foiles, in Encyclopedia of Physics, 2nd edn., ed. by R.G. Lerner, G.L. Trigg (VCH, New York, 1991).

    Google Scholar 

  3. J.M. Honig, in Encyclopedia of Condensed Matter Physics, ed. by F. Bassani, G.L. Liedl, P. Wyder (Elsevier, Amsterdam, 2005).

    Google Scholar 

  4. L. Landau and E. Lifshitz, Electrodynamics of Continuous Media, Course of Theoretical Physics, vol. 8 (Pergamon, New York, 1984).

    Google Scholar 

  5. Y.G. Gurevich and G.N. Logvinov, Semicond. Sci. Technol. 20(12), R57 (2005). http://stacks.iop.org/0268-1242/20/i=12/a=R01.

  6. Y.G. Gurevich and J.E. Velazquez-Perez, Peltier Effect in Semiconductors (Wiley, New York, 2014). https://doi.org/10.1002/047134608X.W8206.

    Book  Google Scholar 

  7. G.N. Logvinov, J.E. Velázquez, I.M. Lashkevych, and Y.G. Gurevich, Appl. Phys. Lett. 89(9), 092118 (2006). https://doi.org/10.1063/1.2345033.

    Article  Google Scholar 

  8. Y.G. Gurevich and I. Lashkevych, Int. J. Thermophys. 34, 341 (2013).

    Article  Google Scholar 

  9. O.Y. Titov, J. Velazquez-Perez, and Y.G. Gurevich, Int. J. Therm. Sci. 92, 44 (2015). https://doi.org/10.1016/j.ijthermalsci.2015.01.023. http://www.sciencedirect.com/science/article/pii/S1290072915000265.

  10. A. Anselm, Introduction to Semiconductor Theory (Mir, Moscow/Prentice-Hall, Englewood Cliffs, 1981).

    Google Scholar 

  11. W. Shockley, Bell Syst. Tech. J. 28, 435 (1949).

    Article  Google Scholar 

  12. K. Seeger, Semiconductor Physics (Springer, Berlin, 1985).

    Book  Google Scholar 

  13. A.G. Samoilovitsch and L.L. Korenblit, Usp. Fiz. Nauk 49(2), 243 (1953). https://doi.org/10.3367/UFNr.0049.195302c.0243. http://ufn.ru/ru/articles/1953/2/c/. (in Russian).

  14. A.G. Samoilovitsch and L.L. Korenblit, Fortschritte der Physik 1(9–10), 486 (1953). https://doi.org/10.1002/prop.19530010903. (in German).

    Article  Google Scholar 

  15. Y.G. Gurevich and G.N. Logvinov, J. Thermoelectr. 1, 13 (2008). https://www.dropbox.com/s/bvjlyjqh768en7x/g.pdf?dl=0

  16. D.J. Sellmyer and C.M. Hurd, in Encyclopedia of Physics, 2nd edn., ed. by R.G. Lerner, G.L. Trigg (VCH, New York, 1991).

    Google Scholar 

  17. G. Labrosse and G. Kasperski, in Encyclopedia of Mathematical Physics, vol. 1, ed. by J.P. Françoise, G.L. Naber, T.S. Tsun (Elsevier, Amsterdam, 2006).

    Google Scholar 

  18. N.M.J. Woodhouse, in Encyclopedia of Mathematical Physics, vol. 1, ed. by J.P. Françoise, G.L. Naber, T.S. Tsun (Elsevier, Amsterdam, 2006).

    Google Scholar 

  19. H.J. Goldsmid, in The Physics of Thermoelectric Energy Conversion, 2053–2571 (Morgan & Claypool, San Rafael, 2017), pp. 2-1–2-8. https://doi.org/10.1088/978-1-6817-4641-8ch2.

  20. Y. Apertet and C. Goupil, Int. J. Therm. Sci. 104, 225 (2016). https://doi.org/10.1016/j.ijthermalsci.2016.01.009. http://www.sciencedirect.com/science/article/pii/S129007291600017X.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Lashkevych.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashkevych, I., Velázquez, J.E., Titov, O.Y. et al. Special Important Aspects of the Thomson Effect. J. Electron. Mater. 47, 3189–3192 (2018). https://doi.org/10.1007/s11664-018-6205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6205-x

Keywords

Navigation