Skip to main content
Log in

Enhancing Thermoelectric Figure-of-Merit of Polycrystalline Na y CoO2 by a Combination of Non-stoichiometry and Co-substitution

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Co-oxides with a layered structure are of interest for high-temperature thermoelectric applications as they can be tuned to enhance their electrical conductivity while retaining their low thermal conductivity. The figure-of-merit of Na y CoO2 has been enhanced using the combined effects of Na-non-stoichiometry and non-isoelectronic Co-substitution. A series of compounds Na0.7Co1−xNi x O2 with x ≤ 0.1 have been synthesized using conventional techniques. Structural analysis using x-ray diffraction and Rietveld refinement shows the formation of a γ-NaCoO2-type phase in all the compounds. The presence of a small amount of NiO for x > 0.05 indicates that the solubility limit of Ni in Na0.7CoO2 is 5 at.%. All the compounds have been found to be p-type with the thermopower reaching a maximum of 220 μV K−1 at 1023 K for x = 0.1. The thermopower has been found to vary linearly with temperature for all the compounds; a degenerate metallic behavior. The electrical resistivity varies between 3 and 10 mΩ cm at all temperatures and has a metallic temperature dependence in agreement with the thermopower results. The power factor for the x = 0.1 compound reaches a maximum value of 0.55 mW m−1 K−2 at ∼ 900 K compared to 0.45 mW m−1 K−2 for the compound with no substitution. The thermal conductivity at 1023 K decreases from 1.2 to 0.9 W m−1 K−1 for x = 0.1. These factors lead to an increase of the figure-of-merit, zT, to 0.58 at 1023 K for x = 0.1, an increase of 57% compared to the unsubstituted compound. The magnetic studies show that Na0.7CoO2 is paramagnetic with an antiferromagnetic transition at ∼ 36 K. Substitution of Ni2+ for Co3+ has been found to induce a ferromagnetic-like transition at ∼ 240 K which is suppressed at high fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, and C. Wan, J. Am. Ceram. Soc. 96, 1 (2013).

    Article  Google Scholar 

  2. K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).

    Article  Google Scholar 

  3. J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).

    Article  Google Scholar 

  4. B.O. Wells, Z.X. Shen, A. Matsuura, D.M. King, M.A. Kastner, M. Greven, and R.J. Birgeneau, Phys. Rev. Lett. 74, 964 (1995).

    Article  Google Scholar 

  5. R. Yoshizaki, Phys. C Supercond. 173, 89 (1991).

    Article  Google Scholar 

  6. R. Li, W. Xu, H. Yang, Y. Wang, Y. Qian, and Z. Chen, Mater. Res. Bull. 29, 1281 (1994).

    Article  Google Scholar 

  7. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  8. E. Rausch, B. Balke, T. Deschauer, S. Ouardi, and C. Felser, APL Mater. 3, 041516 (2015).

    Article  Google Scholar 

  9. J.W. Park, D.H. Kwak, S.H. Yoon, and S.C. Choi, J. Alloys Compd. 487, 550 (2009).

    Article  Google Scholar 

  10. Y. Wang, Y. Sui, J. Cheng, X. Wang, J. Miao, Z. Liu, Z. Qian, and W. Su, J. Alloys Compd. 448, 1 (2008).

    Article  Google Scholar 

  11. M.M. Mallick and S. Vitta, Inorg. Chem. 56, 5827 (2017).

    Article  Google Scholar 

  12. H. Muta, A. Ieda, K. Kurosaki, and S. Yamanaka, Mater. Lett. 58, 3868 (2004).

    Article  Google Scholar 

  13. M. Sathiya, K. Hemalatha, K. Ramesha, J.-M. Tarascon, and A.S. Prakash, Chem. Mater. 24, 1846–1853 (2012).

    Article  Google Scholar 

  14. W. Olszewski, M. Ávila Pérez, C. Marini, E. Paris, X. Wang, T. Iwao, M. Okubo, A. Yamada, T. Mizokawa, N.L. Saini, and L. Simonelli, J. Phys. Chem. C 120, 4227 (2016).

    Article  Google Scholar 

  15. L. Viciu, J.W.G. Bos, H.W. Zandbergen, Q. Huang, M.L. Foo, S. Ishiwata, A.P. Ramirez, M. Lee, N.P. Ong, and R.J. Cava, Phys. Rev. B Condens. Matter Mater. Phys. 73, 174104 (2006).

    Article  Google Scholar 

  16. J.D. Jorgensen, M. Avdeev, D.G. Hinks, J.C. Burley, and S. Short, Phys. Rev. B 68, 214517 (2003).

    Article  Google Scholar 

  17. R. Jin, B.C. Sales, P. Khalifah, and D. Mandrus, Phys. Rev. Lett. 91, 217001 (2003).

    Article  Google Scholar 

  18. R.E. Schaak, T. Klimczuk, M.L. Foo, and R.J. Cava, Nature 424, 527 (2003).

    Article  Google Scholar 

  19. H. Alloul, I.R. Mukhamedshin, G. Collin, and N. Blanchard, EPL Europhys. Lett. 82, 17002 (2008).

    Article  Google Scholar 

  20. T. Motohashi, E. Naujalis, R. Ueda, K. Isawa, M. Karppinen, and H. Yamauchi, Appl. Phys. Lett. 79, 1480 (2001).

    Article  Google Scholar 

  21. H. Kishan, V.P.S. Awana, M.A. Ansari, A. Gupta, R.B. Saxena, V. Ganesan, A.V. Narlikar, C.A. Cardoso, R. Nirmala, D. Buddhikot, and S.K. Malik, J. Appl. Phys. 97, 10A904 (2005).

    Article  Google Scholar 

  22. M.L. Foo, Y. Wang, S. Watauchi, H.W. Zandbergen, T. He, R.J. Cava, and N.P. Ong, Phys. Rev. Lett. 92, 247001 (2004).

    Article  Google Scholar 

  23. N.S. Krasutskaya, A.I. Klyndyuk, L.E. Evseeva, and S.A. Tanaeva, Inorg. Mater. 52, 393 (2016).

    Article  Google Scholar 

  24. C.J. Liu, J.Y. Liao, T.W. Wu, and B.Y. Jen, J. Mater. Sci. 39, 4569 (2004).

    Article  Google Scholar 

  25. T. Seetawan, V. Amornkitbamrung, T. Burinprakhon, S. Maensiri, K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 414, 293 (2006).

    Article  Google Scholar 

  26. T. Seetawan, V. Amornkitbamrung, T. Burinprakhon, S. Maensiri, P. Tongbai, K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 416, 291 (2006).

    Article  Google Scholar 

  27. L. Wang, M. Wang, and D. Zhao, J. Alloys Compd. 471, 519 (2009).

    Article  Google Scholar 

  28. E.E. Khawaja, M.A. Salim, M.A. Khan, F.F. Al-Adel, G.D. Khattak, and Z. Hussain, J. Non. Cryst. Solids 110, 33 (1989).

    Article  Google Scholar 

  29. S.K. Singh, P. Kumar, M. Husain, H. Kishan, and V.P.S. Awana, J. Appl. Phys. 107, 63905 (2010).

    Article  Google Scholar 

  30. A.N. Mansour, Surf. Sci. Spectra 3, 231 (1994).

    Article  Google Scholar 

  31. N.S. McIntyre and M.G. Cook, Anal. Chem. 47, 2208 (1975).

    Article  Google Scholar 

  32. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B Condens. Matter Mater. Phys. 62, 6869 (2000).

    Article  Google Scholar 

  33. M. Jonson and G.D. Mahan, Phys. Rev. B 21, 4223 (1980).

    Article  Google Scholar 

  34. J. Wooldridge, D. Mck Paul, G. Balakrishnan, and M.R. Lees, J. Phys. Condens. Matter 17, 707 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mofasser Mallick.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallick, M.M., Vitta, S. Enhancing Thermoelectric Figure-of-Merit of Polycrystalline Na y CoO2 by a Combination of Non-stoichiometry and Co-substitution. J. Electron. Mater. 47, 3230–3237 (2018). https://doi.org/10.1007/s11664-018-6186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6186-9

Keywords

Navigation