Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection

  • 105 Accesses

  • 3 Citations

Abstract

The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product’s functional properties were analyzed by Fourier transform-infrared spectroscopy and UV–visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A.D. Garje and S.N. Sadakale, Adv. Mater. Lett 4, 58 (2013).

  2. 2.

    C. Wang, L. Yin, L. Zhang, and D. Xiang, RuiGao. Sensors 10, 2088 (2010).

  3. 3.

    G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007).

  4. 4.

    A.M. Alper, Phase Diagrams, Materials Science and Technology. Vol. III: The Use of Phase Diagrams in Electronic Materials and Glass Technology (New York: Academic Press, 1970).

  5. 5.

    E. Florez, P. Fuentealba, and F. Mondragon, Catal. Today 216, 133 (2008).

  6. 6.

    R. Halder and S. Bandyopadhyay, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.09.164.

  7. 7.

    C.A. Downing, A.A. Sokol, and C.R.A. Catlow, Phys. Chem. Chem. Phys. 16, 184 (2014).

  8. 8.

    G. Thangamani, J.K. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S. Goutham, K.V. Rao, K. Chidambaram, M.B. Ahamed, A.N. Grace, and S.K.K. Pasha, Microchim. Acta (2017). https://doi.org/10.1007/s00604-017-2402-1.

  9. 9.

    A. Chandran, J. Prakash, K.K. Naik, A.K. Srivastava, R. Dabrowski, M. Czerwinskic, and A.M. Biradara, J. Mater. Chem. C 2, 1844 (2014).

  10. 10.

    D. Thomas, A. Thomas, A.E. Tom, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, and K.K. Sadasivuni, Synth. Met. 232, 123 (2017).

  11. 11.

    S. Goutham, S. Kaur, K.K. Sadasivuni, J.K. Bal, N. Jayarambabu, D.S. Kumar, and K.V. Rao, Mater. Sci. Semicond. Process. 57, 110 (2017).

  12. 12.

    S. Goutham, S. Bykkam, K.K. Sadasivuni, D.S. Kumar, M. Ahmadipour, Z.A. Ahmad, and K.V. Rao, Microchim. Acta 185, 1 (2018).

  13. 13.

    S. Pandey, G.K. Goswami, and K.K. Nanda, Carbohydr. Polym. 94, 229 (2013).

  14. 14.

    P. Mohanpuria, N.K. Rana, and S.K. Yadav, J. Nanopart. Res. 10, 507 (2008).

  15. 15.

    D.S. Dhawale, D.P. Dubal, A.M. More, T.P. Gujar, and C.D. Lokhande, Sens. Actuator B Chem. 147, 488 (2010).

  16. 16.

    S. Goutham, K.K. Sadasivuni, D.S. Kumar, and K. Venkateswara Rao, RSC Adv. 8, 3243 (2017).

  17. 17.

    S.V. Patil, R.N. Bulakhe, P.R. Deshmukh, N.M. Shinde, and C.D. Lokhande, Sens. Actuator A Phys. 394, 201 (2013).

  18. 18.

    D.S. Dhawale, D.P. Dubal, V.S. Jamadade, R.R. Salunkhe, S.S. Joshi, and C.D. Lokhande, Sensor Actuator B Chem. 145, 205 (2009).

  19. 19.

    B. Baruwati, D.K. Kumar, and S.V. Manorama, Sens. Actuator B Chem. 119, 676 (2006).

  20. 20.

    X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, and J.G. Zhao, Sens. Actuator B Chem. 102, 248 (2004).

  21. 21.

    V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Sens. Actuator B Chem. 120, 551 (2006).

  22. 22.

    M. Gürbüz, G. Günkaya, and A. Doğan, Appl. Surf. Sci. 318, 334 (2014).

  23. 23.

    M.E. Franke, T.J. Koplin, and U. Simon, Small 2, 36 (2006).

  24. 24.

    A.K. Mittal, Y. Chisti, and U.C. Banerjee, Biotechnol. Adv. 31, 346 (2013).

  25. 25.

    D. Thomas, A. Thomas, A.E. Tom, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, and K.K. Sadasivuni, Synth. Met. 232, 123 (2017).

  26. 26.

    S. Goutham, D.S. Kumar, K.K. Sadasivuni, J.J. Cabibihan, and K.V. Rao, J. Electron. Mater. 46, 2334 (2017).

  27. 27.

    A.A. Oladipo, O.J. Adeleye, A.S. Oladipo, and A.O. Aleshinloye, J. Water Process Eng. 16, 142 (2017).

  28. 28.

    R.A. Buchanan, H.H. Caspers, and J. Murphy, Appl. Opt. 2, 1147 (1963).

  29. 29.

    M. Takata, D. Tsubone, and H. Yanagida, J. Am. Ceram. Soc. 59, 4 (1976).

  30. 30.

    Y. Tao, X. Cao, Y. Peng, and Y. Liu, Sens. Actuator B Chem. 148, 292 (2010).

  31. 31.

    C.C. Wu, X. Cao, Q. Wen, Z. Wang, Q. Gao, and H. Zhu, Talanta 79, 1223 (2009).

  32. 32.

    Y. Chu, Q. Zhang, W. Zhang, G. Zhang, and S. Zhu, Meas. Sci. Technol. 25, 2 (2014).

  33. 33.

    H.Y. Li, H. Yang, and X. Guo, Sens. Actuator B Chem. 213, 102 (2015).

  34. 34.

    P. Tyagi, A. Sharma, M. Tomar, and V. Gupta, Article ID 812627, 4 pages (2014). http://dx.doi.org/10.1155/2014/812627.

Download references

Acknowledgements

The authors sincerely acknowledge the Center for Nano Science and Technology (CNST), Institute of Science and Technology (IST), Jawaharlal Nehru Technological University Hyderabad for providing gas sensing facilities to carry out the present research work.

Author information

Correspondence to Kalagadda Venkateswara Rao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thirupathi, R., Solleti, G., Sreekanth, T. et al. A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection. Journal of Elec Materi 47, 3468–3473 (2018). https://doi.org/10.1007/s11664-018-6185-x

Download citation

Keywords

  • MgO
  • liquid petroleum gas
  • green synthesis
  • chemical synthesis
  • gas sensing
  • aloe vera
  • selectivity