Advertisement

Journal of Electronic Materials

, Volume 47, Issue 7, pp 3468–3473 | Cite as

A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection

  • Rampelly Thirupathi
  • Goutham Solleti
  • Tirumala Sreekanth
  • Kishor Kumar Sadasivuni
  • Kalagadda Venkateswara Rao
Article

Abstract

The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product’s functional properties were analyzed by Fourier transform-infrared spectroscopy and UV–visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.

Keywords

MgO liquid petroleum gas green synthesis chemical synthesis gas sensing aloe vera selectivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors sincerely acknowledge the Center for Nano Science and Technology (CNST), Institute of Science and Technology (IST), Jawaharlal Nehru Technological University Hyderabad for providing gas sensing facilities to carry out the present research work.

References

  1. 1.
    A.D. Garje and S.N. Sadakale, Adv. Mater. Lett 4, 58 (2013).CrossRefGoogle Scholar
  2. 2.
    C. Wang, L. Yin, L. Zhang, and D. Xiang, RuiGao. Sensors 10, 2088 (2010).CrossRefGoogle Scholar
  3. 3.
    G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007).CrossRefGoogle Scholar
  4. 4.
    A.M. Alper, Phase Diagrams, Materials Science and Technology. Vol. III: The Use of Phase Diagrams in Electronic Materials and Glass Technology (New York: Academic Press, 1970).Google Scholar
  5. 5.
    E. Florez, P. Fuentealba, and F. Mondragon, Catal. Today 216, 133 (2008).Google Scholar
  6. 6.
    R. Halder and S. Bandyopadhyay, J. Alloys Compd. (2016).  https://doi.org/10.1016/j.jallcom.2016.09.164.Google Scholar
  7. 7.
    C.A. Downing, A.A. Sokol, and C.R.A. Catlow, Phys. Chem. Chem. Phys. 16, 184 (2014).CrossRefGoogle Scholar
  8. 8.
    G. Thangamani, J.K. Deshmukh, K.K. Sadasivuni, D. Ponnamma, S. Goutham, K.V. Rao, K. Chidambaram, M.B. Ahamed, A.N. Grace, and S.K.K. Pasha, Microchim. Acta (2017).  https://doi.org/10.1007/s00604-017-2402-1.Google Scholar
  9. 9.
    A. Chandran, J. Prakash, K.K. Naik, A.K. Srivastava, R. Dabrowski, M. Czerwinskic, and A.M. Biradara, J. Mater. Chem. C 2, 1844 (2014).CrossRefGoogle Scholar
  10. 10.
    D. Thomas, A. Thomas, A.E. Tom, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, and K.K. Sadasivuni, Synth. Met. 232, 123 (2017).CrossRefGoogle Scholar
  11. 11.
    S. Goutham, S. Kaur, K.K. Sadasivuni, J.K. Bal, N. Jayarambabu, D.S. Kumar, and K.V. Rao, Mater. Sci. Semicond. Process. 57, 110 (2017).CrossRefGoogle Scholar
  12. 12.
    S. Goutham, S. Bykkam, K.K. Sadasivuni, D.S. Kumar, M. Ahmadipour, Z.A. Ahmad, and K.V. Rao, Microchim. Acta 185, 1 (2018).CrossRefGoogle Scholar
  13. 13.
    S. Pandey, G.K. Goswami, and K.K. Nanda, Carbohydr. Polym. 94, 229 (2013).CrossRefGoogle Scholar
  14. 14.
    P. Mohanpuria, N.K. Rana, and S.K. Yadav, J. Nanopart. Res. 10, 507 (2008).CrossRefGoogle Scholar
  15. 15.
    D.S. Dhawale, D.P. Dubal, A.M. More, T.P. Gujar, and C.D. Lokhande, Sens. Actuator B Chem. 147, 488 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Goutham, K.K. Sadasivuni, D.S. Kumar, and K. Venkateswara Rao, RSC Adv. 8, 3243 (2017).CrossRefGoogle Scholar
  17. 17.
    S.V. Patil, R.N. Bulakhe, P.R. Deshmukh, N.M. Shinde, and C.D. Lokhande, Sens. Actuator A Phys. 394, 201 (2013).Google Scholar
  18. 18.
    D.S. Dhawale, D.P. Dubal, V.S. Jamadade, R.R. Salunkhe, S.S. Joshi, and C.D. Lokhande, Sensor Actuator B Chem. 145, 205 (2009).CrossRefGoogle Scholar
  19. 19.
    B. Baruwati, D.K. Kumar, and S.V. Manorama, Sens. Actuator B Chem. 119, 676 (2006).CrossRefGoogle Scholar
  20. 20.
    X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, and J.G. Zhao, Sens. Actuator B Chem. 102, 248 (2004).CrossRefGoogle Scholar
  21. 21.
    V.R. Shinde, T.P. Gujar, and C.D. Lokhande, Sens. Actuator B Chem. 120, 551 (2006).CrossRefGoogle Scholar
  22. 22.
    M. Gürbüz, G. Günkaya, and A. Doğan, Appl. Surf. Sci. 318, 334 (2014).CrossRefGoogle Scholar
  23. 23.
    M.E. Franke, T.J. Koplin, and U. Simon, Small 2, 36 (2006).CrossRefGoogle Scholar
  24. 24.
    A.K. Mittal, Y. Chisti, and U.C. Banerjee, Biotechnol. Adv. 31, 346 (2013).CrossRefGoogle Scholar
  25. 25.
    D. Thomas, A. Thomas, A.E. Tom, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, and K.K. Sadasivuni, Synth. Met. 232, 123 (2017).CrossRefGoogle Scholar
  26. 26.
    S. Goutham, D.S. Kumar, K.K. Sadasivuni, J.J. Cabibihan, and K.V. Rao, J. Electron. Mater. 46, 2334 (2017).CrossRefGoogle Scholar
  27. 27.
    A.A. Oladipo, O.J. Adeleye, A.S. Oladipo, and A.O. Aleshinloye, J. Water Process Eng. 16, 142 (2017).CrossRefGoogle Scholar
  28. 28.
    R.A. Buchanan, H.H. Caspers, and J. Murphy, Appl. Opt. 2, 1147 (1963).CrossRefGoogle Scholar
  29. 29.
    M. Takata, D. Tsubone, and H. Yanagida, J. Am. Ceram. Soc. 59, 4 (1976).CrossRefGoogle Scholar
  30. 30.
    Y. Tao, X. Cao, Y. Peng, and Y. Liu, Sens. Actuator B Chem. 148, 292 (2010).CrossRefGoogle Scholar
  31. 31.
    C.C. Wu, X. Cao, Q. Wen, Z. Wang, Q. Gao, and H. Zhu, Talanta 79, 1223 (2009).CrossRefGoogle Scholar
  32. 32.
    Y. Chu, Q. Zhang, W. Zhang, G. Zhang, and S. Zhu, Meas. Sci. Technol. 25, 2 (2014).CrossRefGoogle Scholar
  33. 33.
    H.Y. Li, H. Yang, and X. Guo, Sens. Actuator B Chem. 213, 102 (2015).CrossRefGoogle Scholar
  34. 34.
    P. Tyagi, A. Sharma, M. Tomar, and V. Gupta, Article ID 812627, 4 pages (2014). http://dx.doi.org/10.1155/2014/812627.

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Rampelly Thirupathi
    • 1
  • Goutham Solleti
    • 2
  • Tirumala Sreekanth
    • 1
  • Kishor Kumar Sadasivuni
    • 4
  • Kalagadda Venkateswara Rao
    • 2
    • 3
  1. 1.Department of PhysicsJNTUH College of Engineering SultanpurSultanpur (V), Pulkal (M), SangareddyIndia
  2. 2.Center for Nano Science and TechnologyJawaharlal Nehru Technological University HyderabadKukatpally, HyderabadIndia
  3. 3.School of Medicine, Radiology DepartmentJohns Hopkins UniversityBaltimoreUSA
  4. 4.Center for Advanced MaterialsQatar UniversityDohaQatar

Personalised recommendations