Skip to main content
Log in

Structural, Optical, and Vibrational Properties of ZnO Microrods Deposited on Silicon Substrate

  • Topical Collection: Electronic Materials for Renewable Energy Applications
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) microrod films deposited by spray pyrolysis on silicon substrate at 350 ± 5°C have been studied and evaluated, and compared with thin films deposited by electron beam to confirm the identity of the studied samples. The films were characterized using different techniques. The microrod structure was studied and confirmed by scanning electron microscopy. Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction analysis confirmed successful deposition of ZnO thin films with the expected wurtzite structure. Reflectance data showed a substantial drop across the whole studied wavelength range. The photoluminescence (PL) spectra of the studied samples showed a peak at ∼ 360 nm, representing a signature of ZnO. The shift in the PL peak position is due to defects and other species present in the films, as confirmed by FTIR and energy-dispersive x-ray spectroscopy results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.A. Ali, A.A. Iliadis, R.F. Mulligan, A.V.W. Cresce, P. Kofinas, and U. Lee, Solid State Electron. 46, 1639 (2002).

    Article  Google Scholar 

  2. A. Kamalianfar, S.A. Halim, M.G. Naseri, M. Navasery, F.U. Din, J.A.M. Zahedi, K.P. Lim, E.B. Saion, C.K. Chen, and A.L. Monfared, Int. J. Electrochem. Sci. 8, 7724 (2013).

    Google Scholar 

  3. Y. Zou, Z. Qi, W. Jiang, J. Duan, and Z. Ma, Mater. Lett. 199, 57 (2017).

    Article  Google Scholar 

  4. P.M. Verghese and D.R. Clarke, J. Appl. Phys. 87, 4430 (2000).

    Article  Google Scholar 

  5. R.K. Thareja and A. Mitra, Appl. Phys. B Lasers Opt. 71, 181 (2000).

    Article  Google Scholar 

  6. S. Ueno and S. Fujihara, Int. J. Photoenergy (2012). https://doi.org/10.1155/2012/268173

  7. C. Shi, K. Xiang, Y. Zho, X. Chen, W. Zhou, and H. Chen, Electrochem. Acta 246, 1088 (2017).

    Article  Google Scholar 

  8. G.A. Velázquez-Nevárez, J.R. Vargas-García, J. Aguilar-Hernández, O.E. Vega-Becerra, F. Chen, Q. Shen, and L. Zhang, Mater. Res. 19, 113 (2016).

    Article  Google Scholar 

  9. N. Ekthammathat, A. Phuruangrat, S. Thongtem, and T. Thongtem, Dig. J. Nanomater. Biostruct. 10, 149 (2015).

    Google Scholar 

  10. Y. Chen, H.-J. Ko, S.-K. Hong, Y. Segawa, and T. Yao, Appl. Phys. Lett. 80, 1358 (2002).

    Article  Google Scholar 

  11. D.S. Kang, S.K. Han, S.M. Yang, J.G. Kim, W.J. Hwang, and S.K. Hong, J. Korean Phys. Soc. 53, 292 (2008).

    Article  Google Scholar 

  12. S. Nicolay, M. Benkhaira, L. Ding, J. Escarre, G. Bugnon, F. Meillaud, and C. Ballif, Sol. Energy Mater. Sol. Cells 105, 46 (2012).

    Article  Google Scholar 

  13. S. Faÿ, J. Steinhauser, S. Nicolay, and C. Ballif, Thin Solid Films 518, 2961 (2009).

    Article  Google Scholar 

  14. A. Hongsingthong, I.A. Yunaz, S. Miyajima, and M. Konagai, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference (2010), p. 1508.

  15. O. Kluth, G. Schöpe, J. Hüpkes, C. Agashe, J. Müller, and B. Rech, Thin Solid Films 442, 80 (2003).

    Article  Google Scholar 

  16. S.J. Ikhmayies, N.M. Abu El-Haija, and R.N. Ahmad-Bitar, Phys. Scr. 81, 015703 (2010).

    Article  Google Scholar 

  17. F. Kadi Allah, S.Y. Abe, C.M. Nunez, A. Khelil, L. Cattin, M. Morsli, J.C. Bernede, A. Bougrine, M.A. del Valle, and F.R. Diaz, Appl. Surf. Sci. 253, 9241 (2007).

    Article  Google Scholar 

  18. I. Soumahoro, G. Schmerber, A. Douayar, S. Colis, M. Abd-Lefdil, N. Hassanain, A. Berrada, D. Muller, A. Slaoui, H. Rinnert, and A. Dinia, J. Appl. Phys. 109, 033708 (2011).

    Article  Google Scholar 

  19. K. Vijayalakshmi, K. Karthick, and D. Gopalakrishna, Ceram. Int. 39, 4749 (2013).

    Article  Google Scholar 

  20. S.J. Ikhmayies and M.B. Zbib, J. Electron. Mater. 46, 3982 (2017).

    Article  Google Scholar 

  21. P.V. Raghavendra, J.S. Bhat, and N.G. Deshpande, Mater. Sci. Semicond. Process. 68, 262 (2017).

    Article  Google Scholar 

  22. H.K. Juwhari, S.J. Ikhmayies, and B. Lahlouh, Int. J. Hydrog. Energy 42, 17741 (2017).

    Article  Google Scholar 

  23. P. Petkova, L. Nedelchev, D. Nazarova, K. Boubaker, and R. Bachvarova, Optik 139, 217 (2017).

    Article  Google Scholar 

  24. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri, Nat. Methods 9, 671 (2012).

    Article  Google Scholar 

  25. J. Schindelin, C.T. Rueden, M.C. Hiner, and K.W. Eliceiri, Mol. Reprod. Dev. 82, 518 (2015).

    Article  Google Scholar 

  26. K. Zheng, Q. Guo, and E.G. Wang, Surf. Sci. 602, 2600 (2008).

    Article  Google Scholar 

  27. J.M. Jensen, A.B. Oelkers, R. Toivola, and D.C. Johnson, Chem. Mater. 14, 2276 (2002).

    Article  Google Scholar 

  28. C.S. Ku, H.Y. Lee, J.M. Huang, and C.M. Lin, Mater. Chem. Phys. 120, 236 (2010).

    Article  Google Scholar 

  29. D.C. Agarwal, R.S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S.A. Khan, D.K. Avasthi, J.C. Pivin, M. Kumar, J. Ghatak, and P.V. Satyam, J. Appl. Phys. 99, 123105 (2006).

    Article  Google Scholar 

  30. P. Mitra and S. Mondal, Prog. Theor. Exp. Phys. 1, 17 (2013).

    Google Scholar 

  31. R.D. Shannon, Acta Cryst. A 32, 751 (1976).

    Article  Google Scholar 

  32. O. Lupan, L. Chow, G. Chai, B. Roldan, A. Naitabdi, A. Schulte, and H. Heinrich, Mater. Sci. Eng. B 145, 57 (2007).

    Article  Google Scholar 

  33. J.J. Hassan, M.A. Mahdi, A. Ramizy, H.A. Hassan, and Z. Hassan, Superlattices Microstruct. 53, 31 (2013).

    Article  Google Scholar 

  34. K.L. Foo, M. Kashif, U. Hashim, and M.E. Ali, Curr. Nanosci. 9, 000 (2013).

    Article  Google Scholar 

  35. A. Barranco, F. Yubero, J.P. Espinós, P. Groening, and A.R. González-Elipe, J. Appl. Phys. 97, 113714 (2005).

    Article  Google Scholar 

  36. X. Wang, Q. Li, Z. Zhang, Z. Liu, and J. Zhang, Appl. Phys. Lett. 84, 4941 (2004).

    Article  Google Scholar 

  37. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, and S.Q. Feng, Appl. Phys. Lett. 78, 407 (2001).

    Article  Google Scholar 

  38. A.R. Nimbalkar and M.G. Patil, Phys. B 527, 7 (2017).

    Article  Google Scholar 

  39. A. Djelloul, M.-S. Aida, and J. Bougdira, J. Lumin. 130, 2113 (2010).

    Article  Google Scholar 

  40. T. Ivanova, A. Harizanova, T. Koutzarova, and B. Vertruyen, Mater. Lett. 64, 1147 (2010).

    Article  Google Scholar 

  41. X.Q. Wei, Z. Zhang, Y.X. Yu, and B.Y. Ma, Opt. Laser Technol. 41, 530 (2009).

    Article  Google Scholar 

  42. P.C. Yao, S.T. Hang, Y.S. Lin, W.T. Yen, and Y.C. Lin, Appl. Surf. Sci. 257, 1441 (2010).

    Article  Google Scholar 

  43. V. Zeleňák, Z. Vargová, and K. Györyová, Spectrochem. Acta A 66, 262 (2007).

    Article  Google Scholar 

  44. V. Otero, D. Sanches, C. Montagner, M. Vilarigues, L. Carlyle, J.A. Lopes, and M.J. Melo, J. Raman Spectrosc. (2014). https://doi.org/10.1002/jrs.4520.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashar I. Lahlouh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahlouh, B.I., Ikhmayies, S.J. & Juwhari, H.K. Structural, Optical, and Vibrational Properties of ZnO Microrods Deposited on Silicon Substrate. J. Electron. Mater. 47, 4455–4462 (2018). https://doi.org/10.1007/s11664-018-6178-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6178-9

Keywords

Navigation