Skip to main content
Log in

Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have synthesized a chemiresistive sensor for chlorine (Cl2) gas in the range of 2–200 ppm based on nickel oxide (NiO) nanoparticles obtained by wet chemical synthesis. The nanoparticles were characterized by x-ray diffraction (XRD) analysis, field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and photoluminescence (PL) spectroscopy. XRD spectra of the sensing layer revealed the cubic phase of NiO nanoparticles. The NiO nanoparticle size was calculated to be ∼ 21 nm using a Williamson-Hall plot. The bandgap of the NiO nanoparticles was found to be 3.13 eV using Tauc plots of the absorbance curve. Fast response time (12 s) and optimum recovery time (∼ 27 s) were observed for 10 ppm Cl2 gas at moderate temperature of 200°C. These results demonstrate the potential application of NiO nanoparticles for fabrication of highly sensitive and selective sensors for Cl2 gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T.E. Graedel, J. Ind. Ecol. 13, 154 (2009).

    Article  Google Scholar 

  2. T. Van Dang, N. Duc Hoa, N. Van Duy, and N. Van Hieu, ACS Appl. Mater. Interfaces 8, 4828 (2016).

    Article  Google Scholar 

  3. C.W. White and J.G. Martin, Proc. Am. Thorac. Soc. 7, 257 (2010).

    Article  Google Scholar 

  4. A. Sanger, A. Kumar, A. Kumar, J. Jaiswal, and R. Chandra, Sens. Actuators B 236, 16 (2016).

    Article  Google Scholar 

  5. A. Kumar, A. Sanger, A. Kumar, and R. Chandra, RSC Adv. 6, 47178 (2016).

    Article  Google Scholar 

  6. A. Sanger, A. Kumar, A. Kumar, P.K. Jain, Y.K. Mishra, and R. Chandra, Ind. Eng. Chem. Res. 55, 9452 (2016).

    Article  Google Scholar 

  7. I. Hotovy, J. Huran, L. Spiess, S. Hascik, and V. Rehacek, Sens. Actuators B 57, 147 (1999).

    Article  Google Scholar 

  8. A.C. Sonavane, A.I. Inamdar, P.S. Shinde, H.P. Deshmukh, R.S. Patil, and P.S. Patil, J. Alloys Compd. 489, 667 (2010).

    Article  Google Scholar 

  9. B. Varghese, M.V. Reddy, Z. Yanwu, C.S. Lit, T.C. Hoong, G.V. Subba Rao, B.V.R. Chowdari, A.T.S. Wee, C.T. Lim, and C.-H. Sow, Chem. Mater. 20, 3360 (2008).

    Article  Google Scholar 

  10. Y. Zhu, C. Cao, S. Tao, W. Chu, Z. Wu, and Y. Li, Sci. Rep. 4, 5787 (2014).

    Article  Google Scholar 

  11. B. Vidhyadharan, N.K.M. Zain, I.I. Misnon, R.A. Aziz, J. Ismail, M.M. Yusoff, and R. Jose, J. Alloys Compd. 610, 143 (2014).

    Article  Google Scholar 

  12. A. Cimino, M. Lo Jacono, and M. Schiavello, J. Phys. Chem. 75, 1044 (1971).

    Article  Google Scholar 

  13. J. He, H. Lindström, A. Hagfeldt, and S.-E. Lindquist, J. Phys. Chem. B 103, 8940 (1999).

    Article  Google Scholar 

  14. H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, Sens. Actuators B 151, 162 (2010).

    Article  Google Scholar 

  15. D.S. Dalavi, N.S. Harale, I.S. Mulla, V.K. Rao, V.B. Patil, I.Y. Kim, J.H. Kim, and P.S. Patil, Mater. Lett. 146, 103 (2015).

    Article  Google Scholar 

  16. S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, and M.C. Kanan, Sensors 9, 8158 (2009).

    Article  Google Scholar 

  17. A. Sanger, A. Kumar, S. Chauhan, Y.K. Gautam, and R. Chandra, Sens. Actuators B 213, 252 (2015).

    Article  Google Scholar 

  18. S.J. Musevi, A. Aslani, H. Motahari, and H. Salimi, J. Saudi Chem. Soc. 20, 245 (2016).

    Article  Google Scholar 

  19. D.S. Hall, D.J. Lockwood, C. Bock, and B.R. MacDougall, Proc. R. Soc. Math. Phys. Eng. Sci. 471, 20140792 (2015).

    Article  Google Scholar 

  20. W. Guo, K.N. Hui, and K.S. Hui, Mater. Lett. 92, 291 (2013).

    Article  Google Scholar 

  21. V. Mote, Y. Purushotham, and B. Dole, J. Theor. Appl. Phys. 6, 1 (2012).

    Article  Google Scholar 

  22. N. Mironova-Ulmane, A. Kuzmin, I. Steins, J. Grabis, I. Sildos, and M. Pärs, J. Phys: Conf. Ser. 93, 012039 (2007).

    Google Scholar 

  23. M.-L. Lu, T.-Y. Lin, T.-M. Weng, and Y.-F. Chen, Opt. Express 19, 16266 (2011).

    Article  Google Scholar 

  24. M. El-Kemary, N. Nagy, and I. El-Mehasseb, Mater. Sci. Semicond. Process. 16, 1747 (2013).

    Article  Google Scholar 

  25. V. Biju and M. Abdul Khadar, Spectrochim. Acta Part A 59, 121 (2003).

    Article  Google Scholar 

  26. M.A. Shah, Nanoscale Res. Lett. 3, 255 (2008).

    Article  Google Scholar 

  27. P.V. Tong, N.D. Hoa, N.V. Duy, V.V. Quang, N.T. Lam, and N.V. Hieu, Int. J. Hydrogen Energy 38, 12090 (2013).

    Article  Google Scholar 

  28. L. Liu, S. Li, J. Zhuang, L. Wang, J. Zhang, H. Li, Z. Liu, Y. Han, X. Jiang, and P. Zhang, Sens. Actuators B 155, 782 (2011).

    Article  Google Scholar 

  29. W.X. Jin, S.Y. Ma, Z.Z. Tie, J.J. Wei, J. Luo, X.H. Jiang, T.T. Wang, W.Q. Li, L. Cheng, and Y.Z. Mao, Sens. Actuators B 213, 171 (2015).

    Article  Google Scholar 

  30. J. Zhang, D. Zeng, Q. Zhu, J. Wu, Q. Huang, and C. Xie, J. Phys. Chem. C 120, 3936 (2016).

    Article  Google Scholar 

  31. J. Zhang, D. Zeng, Q. Zhu, J. Wu, Q. Huang, W. Zhang, and C. Xie, Phys. Chem. Chem. Phys. 18, 5386 (2016).

    Article  Google Scholar 

  32. S.-J. Choi, S. Chattopadhyay, J.J. Kim, S.-J. Kim, H.L. Tuller, G.C. Rutledge, and I.-D. Kim, Nanoscale 8, 9159 (2016).

    Article  Google Scholar 

  33. A. Sanger, P.K. Jain, Y.K. Mishra, and R. Chandra, Sens. Actuators B 242, 694 (2017).

    Article  Google Scholar 

  34. Y.K. Mishra and R. Adelung, Mater. Today (2017). https://doi.org/10.1016/j.mattod.2017.11.003.

    Google Scholar 

  35. S. Jain, A. Sanger, S. Chauhan, and R. Chandra, Mater. Res. Express 1, 35046 (2014).

    Article  Google Scholar 

  36. A. Sanger, A. Kumar, A. Kumar, and R. Chandra, Sens. Actuators B 234, 8 (2016).

    Article  Google Scholar 

  37. J. Tamaki, C. Naruo, Y. Yamamoto, and M. Matsuoka, Sens. Actuators B 83, 190 (2002).

    Article  Google Scholar 

  38. C.V.G. Reddy, S.V. Manorama, and V.J. Rao, Sens. Actuators B 55, 90 (1999).

    Article  Google Scholar 

  39. W. Ding, H. Ping, X. Jiaqiang, D. Xiaowen, and P. Qingyi, Sens. Actuators B 140, 383 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, M., Sanger, A. & Singh, A. Highly Sensitive NiO Nanoparticle based Chlorine Gas Sensor. J. Electron. Mater. 47, 3451–3458 (2018). https://doi.org/10.1007/s11664-018-6176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6176-y

Keywords

Navigation