Skip to main content
Log in

Inductively Coupled Plasma-Induced Electrical Damage on HgCdTe Etched Surface at Cryogenic Temperatures

  • U.S. Workshop on Physics and Chemistry of II-VI Materials 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Plasma etching is a powerful technique for transferring high-resolution lithographic patterns into HgCdTe material with low etch-induced damage, and it is important for fabricating small-pixel-size HgCdTe infrared focal plane array (IRFPA) detectors. P- to n-type conversion is known to occur during plasma etching of vacancy-doped HgCdTe; however, it is usually unwanted and its removal requires extra steps. Etching at cryogenic temperatures can reduce the etch-induced type conversion depth in HgCdTe via the electrical damage mechanism. Laser beam-induced current (LBIC) is a nondestructive photoelectric characterization technique which can provide information regarding the vertical and lateral electrical field distribution, such as defects and pn junctions. In this work, inductively coupled plasma (ICP) etching of HgCdTe was implemented at cryogenic temperatures. For an Ar/CH4 (30:1 in SCCM) plasma with ICP input power of 1000 W and RF-coupled DC bias of ∼ 25 V, a HgCdTe sample was dry-etched at 123 K for 5 min using ICP. The sample was then processed to remove a thin layer of the plasma-etched region while maintaining a ladder-like damaged layer by continuously controlling the wet chemical etching time. Combining the ladder etching method and LBIC measurement, the ICP etching-induced electrical damage depth was measured and estimated to be about 20 nm. The results indicate that ICP etching at cryogenic temperatures can significantly suppress plasma etching-induced electrical damage, which is beneficial for defining HgCdTe mesa arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, J. Antoszewski, and L. Faraone, J. Appl. Phys. 105, 4 (2009).

    Article  Google Scholar 

  2. JTM Wotherspoon, U.K. Patent No. GB2095898 (1981).

  3. M.V. Blackman, D.E. Charlton, M.D. Jenner, D.R. Purdy, J.T.M. Wotherspoon, C.T. Elliott, and A.M. White, Electron. Lett. 23, 978 (1987).

    Article  Google Scholar 

  4. V. Srivastav, R. Pal, and H.P. Vyas, Opto-Electron. Rev. 13, 197 (2005).

    Google Scholar 

  5. C.R. Eddy, E.A. Dobisz, J.R. Meyer, and C.A. Hoffman, J. Vac. Sci. Technol. A 11, 1763 (1993).

    Article  Google Scholar 

  6. A.J. Stoltz, J.D. Benson, P.R. Boyd, M. Martinka, J.B. Varesi, A.W. Kaleczyc, E.P.G. Smith, S.M. Johnson, W.A. Radford, and J.H. Dinan, J. Electron. Mater. 32, 692 (2003).

    Article  Google Scholar 

  7. E. Laffosse, J. Baylet, J.P. Chamonal, G. Destefanis, G. Cartry, and C. Cardinaud, J. Electron. Mater. 34, 740 (2005).

    Article  Google Scholar 

  8. E.P.G. Smith, J.K. Gleason, L.T. Pham, E.A. Patten, and M.S. Welkowsky, J. Electron. Mater. 32, 816 (2003).

    Article  Google Scholar 

  9. A.J. Stoltz, J.D. Benson, and P.J. Smith, J. Electron. Mater. 37, 1225 (2008).

    Article  Google Scholar 

  10. E. Belas, J. Franc, A. Toth, P. Moravec, R. Grill, H. Sitter, and P. Höschl, Semicond. Sci. Technol. 11, 1116 (1996).

    Article  Google Scholar 

  11. E.P.G. Smith, J.F. Siliquini, C.A. Musca, J. Antoszewski, J.M. Dell, L. Faraone, and J. Piotrowski, J. Appl. Phys. 83, 5555 (1998).

    Article  Google Scholar 

  12. A. Gaucher, J. Baylet, J. Rothman, E. Martinez, and C. Cardinaud, J. Electron. Mater. 42, 3006 (2013).

    Article  Google Scholar 

  13. E. Belas, R. Grill, J. Franc, A. Toth, P. Hoschl, H. Sitter, and P. Moravec, J. Cryst. Growth 159, 1117 (1996).

    Article  Google Scholar 

  14. J. Bajaj, L.O. Bubulac, P.R. Newman, W.E. Tennant, and P.M. Raccah, J. Vac. Sci. Technol. A 5, 3186 (1987).

    Article  Google Scholar 

  15. W.C. Qiu, X.A. Cheng, R. Wang, Z.J. Xu, and T. Jiang, J. Appl. Phys. 115, 204506 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L.F., Chen, Y.Y., Ye, Z.H. et al. Inductively Coupled Plasma-Induced Electrical Damage on HgCdTe Etched Surface at Cryogenic Temperatures. J. Electron. Mater. 47, 5759–5762 (2018). https://doi.org/10.1007/s11664-018-6172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6172-2

Keywords

Navigation