Structural and Electronic Properties of α2-Graphyne Nanotubes: A Density Functional Theory Study

Abstract

Another form of carbon-based two-dimensional material in the graphene family, named the α2-graphyne sheet, was predicted very recently. The α2-graphyne sheet was created by doubling each acetylenic linker in an α-graphyne sheet. It exhibited semimetallic Dirac point features similar to graphene and α-graphyne sheets. In the present work, single -walled carbon nanotubes based on an α2-graphyne sheet was introduced. The structural and electronic properties of these nanotubes were studied using density functional theory. It was found that armchair α2-graphyne nanotubes showed metallic behavior, while zigzag α2-graphyne nanotubes were found to have semiconducting or metallic properties depending on tube size. The energy band gap of zigzag α2-graphyne nanotubes decreased with increasing tube diameter. The results indicated that the α2-graphyne sheet and its nanotubes can be proper materials for future nanoelectronics.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    X.-D. Wen, T. Yang, R. Hoffmann, N.W. Ashcroft, R.L. Martin, S.P. Rudin, and J.-X. Zhu, ACS Nano 6, 7142 (2012).

    Article  Google Scholar 

  2. 2.

    R. Majidi, Mol. Phys. 111, 89 (2012).

    Article  Google Scholar 

  3. 3.

    R. Majidi and A.R. Karami, Ind. J. Phys. 88, 483 (2014).

    Article  Google Scholar 

  4. 4.

    R. Majidi and A.R. Karami, Phys. E 70, 170 (2015).

    Article  Google Scholar 

  5. 5.

    J.S. da Araújo and R.W. Nunes, Phys. Rev. B 81, 073408 (2010).

    Article  Google Scholar 

  6. 6.

    A.K. Geim, Science 324, 1530 (2009).

    Article  Google Scholar 

  7. 7.

    R. Majidi and K. Ghafoori Tabrizi, Fuller. Nanotub. Carbon Nanostruct. 19, 532 (2011).

    Article  Google Scholar 

  8. 8.

    D. Malko, C. Neiss, F. Vines, and A. Gorling, Phys. Rev. Lett. 108, 086804 (2012).

    Article  Google Scholar 

  9. 9.

    R.H. Baughman, H. Eckhardt, and M. Kertesz, J. Chem. Phys. 87, 6687 (1987).

    Article  Google Scholar 

  10. 10.

    R. Majidi, Nano 8, 1350060 (2013).

    Article  Google Scholar 

  11. 11.

    R. Majidi, Can. J. Phys. 94, 305 (2016).

    Article  Google Scholar 

  12. 12.

    R. Majidi, Can. J. Chem. 94, 229 (2016).

    Article  Google Scholar 

  13. 13.

    R. Majidi and A.R. Karami, Stud. UBB Chem. 1, 177 (2016).

    Google Scholar 

  14. 14.

    R. Majidi and A.R. Karami, Mol. Phys. 111, 3194 (2013).

    Article  Google Scholar 

  15. 15.

    B. Bhattacharya, N. Bedamani Singh, and U. Sarkar, Int. J. Quantum Chem. 115, 820 (2015).

    Article  Google Scholar 

  16. 16.

    U. Sarkar, B. Bhattacharya, and N. Seriani, Chem. Phys. 461, 74 (2015).

    Article  Google Scholar 

  17. 17.

    B. Bhattacharya and U. Sarkar, Chem. Phys. 478, 73 (2016).

    Article  Google Scholar 

  18. 18.

    N.V.R. Nulakani and V. Subramanian, J. Phys. Chem. C 120, 15153 (2016).

    Article  Google Scholar 

  19. 19.

    R. Majidi, Phys. E 90, 189 (2017).

    Article  Google Scholar 

  20. 20.

    R. Majidi and A.R. Karami, Comput. Mater. Sci. 97, 227 (2015).

    Article  Google Scholar 

  21. 21.

    V.R. Coluci and D.S. Galvao, J. Chem. Phys. 121, 3228 (2004).

    Article  Google Scholar 

  22. 22.

    A.L. Ivanovskii, Prog. Solid State Chem. 41, 1 (2013).

    Article  Google Scholar 

  23. 23.

    B. Kang and J.K. Lee, Carbon 84, 246 (2015).

    Article  Google Scholar 

  24. 24.

    V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvao, and R.H. Baughman, Phys. Rev. B 68, 035430 (2003).

    Article  Google Scholar 

  25. 25.

    A.N. Enyashin, Y.N. Makurin, and A.L. Ivanovskii, Carbon 42, 2081 (2004).

    Article  Google Scholar 

  26. 26.

    V.R. Coluci, S.F. Braga, S.B. Legoas, D.S. Galvao, and R.H. Baughman, Nanotechnology 15, 142 (2004).

    Article  Google Scholar 

  27. 27.

    R. Majidi, J. Comput. Electron. 15, 1263 (2016).

    Article  Google Scholar 

  28. 28.

    J. Deb, B. Bhattacharya, D. Paul, and U. Sarkar, Phys. E 84, 330 (2016).

    Article  Google Scholar 

  29. 29.

    A.R. Karami and R. Majidi, Chem. Lett. 44, 1071 (2015).

    Article  Google Scholar 

  30. 30.

    T. Ozaki, H. Kino, J. Yu, M.J. Han, N. Kobayashi, M. Ohfuti, F. Ishii, F., et al., User’s manual of OpenMX version 3.8. http://www.openmx-square.org. Accessed 1 Feb 2018.

  31. 31.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  32. 32.

    I. Morrison, D.M. Bylander, and L. Kleinman, Phys. Rev. B 47, 6728 (1993).

    Article  Google Scholar 

  33. 33.

    http://www.jaist.ac.jp/∼t-ozaki/vps_pao2013/C/index.html. Accessed 1 Feb 2018.

  34. 34.

    S. Jalili and R. Majidi, J. Comp. Theor. Nanosci. 3, 664 (2006).

    Article  Google Scholar 

  35. 35.

    M.S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33, 883 (1995).

    Article  Google Scholar 

  36. 36.

    R. Majidi, K. Ghafoori Tabrizi, and S. Jalili, Phys. B 404, 3417 (2009).

    Article  Google Scholar 

  37. 37.

    M. Ouyang, J.L. Huang, C.L. Cheung, and C.M. Lieber, Science 292, 702 (2001).

    Article  Google Scholar 

  38. 38.

    M.R. Mananghaya, G.N. Santos, D. Yu, and C. Stampfl, Sci. Rep. 7, 15727 (2017).

    Article  Google Scholar 

  39. 39.

    H.J. Liu and C.T. Chan, Phys. Rev. B 66, 115416 (2002).

    Article  Google Scholar 

  40. 40.

    M. Machon, S. Reich, C. Thomsen, D. Sanchez-Portal, and P. Ordejon, Phys. Rev. B 66, 155410 (2002).

    Article  Google Scholar 

  41. 41.

    C.L. Kane and E.J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    Article  Google Scholar 

  42. 42.

    M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Berlin: Springer, 2001).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roya Majidi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Majidi, R. Structural and Electronic Properties of α2-Graphyne Nanotubes: A Density Functional Theory Study. Journal of Elec Materi 47, 2890–2896 (2018). https://doi.org/10.1007/s11664-018-6156-2

Download citation

Keywords

  • α2-Graphyne
  • graphyne nanotube
  • electronic band structure
  • density of states
  • density functional theory