Effect of Ca2+ Ions on Electrical Properties of Ba1−xCa x Ti0.90Sn0.10O3–0.05Y2O3 Ceramics

  • Zhi-hui Chen
  • Zhi-wei Li
  • Jian-ning Ding
  • Tian-xiang Zhao
  • Jian-hua Qiu
  • Ke-qian Zhu
  • Jiu-jun Xu
  • Bing Zhang
Article
  • 12 Downloads

Abstract

Ba1−xCa x Ti0.90Sn0.10O3–0.05Y2O3 (BCTSY) lead-free piezoceramics with x = 0.02 to 0.10 have been fabricated by solid-state sintering method at 1420°C. The effects of Ca2+ ions on the microstructure and electrical properties of the samples were studied. X-ray diffraction analysis showed that all samples possessed pure perovskite structure with Ca2+ ions diffused into the matrix lattice. The rhombohedral phase and tetragonal phase coexisted in the composition range of 0.02 < x < 0.06. The microstructure of BCTSY ceramic became more homogeneous with addition of Ca2+ ions, and the average grain size of the samples decreased from 97 μm (x = 0.02) to 18 μm (x = 0.10). Addition of Ca2+ remarkably improved the piezoelectric properties, enhanced the dielectric frequency dispersion, and increased the Curie temperature of the ceramics. The piezoelectric properties of the ceramics were optimized at x = 0.04 with d33 and Kp values of 579 pC/N and 52.7%, respectively.

Keywords

BaTiO3 Ca doping piezoelectric properties dielectric properties ferroelectrics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Liu and X. Ren, Phys. Rev. Lett. 103, 257602 (2009).CrossRefGoogle Scholar
  2. 2.
    W. Li, Z. Xu, R.Q. Chu, P. Fu, and G.Z. Zang, J. Eur. Ceram. Soc. 32, 517 (2011).CrossRefGoogle Scholar
  3. 3.
    H. Takahashi, Y. Numamoto, J. Tani, and S. Tsurekawa, Jpn. J. Appl. Phys. 45, 7405 (2006).CrossRefGoogle Scholar
  4. 4.
    S.F. Shao, J.L. Zhang, Z. Zhang, P. Zheng, M.L. Zhao, J.C. Li, and C.L. Wang, J. Phys. D Appl. Phys. 41, 125408 (2008).CrossRefGoogle Scholar
  5. 5.
    S.W. Zhang, H. Zhang, B.P. Zhang, and G. Zhao, J. Eur. Ceram. Soc. 29, 3235 (2009).CrossRefGoogle Scholar
  6. 6.
    W. Li, Z.J. Xu, R.Q. Chu, P. Fang, and G.Z. Zang, J. Eur. Ceram. Soc. 32, 517 (2012).CrossRefGoogle Scholar
  7. 7.
    L.F. Zhu, B.P. Zhang, X.K. Zhao, and L. Zhao, J. Am. Ceram. Soc. 96, 241 (2013).CrossRefGoogle Scholar
  8. 8.
    L. Zhao, B.P. Zhang, P.F. Zhou, L.F. Zhu, and N. Wang, Ceram. Int. 42, 1086 (2016).CrossRefGoogle Scholar
  9. 9.
    Z.H. Chen, Z.W. Li, J.J. Xu, H.F. Guo, J.H. Qiu, and Y. Yang, J. Alloys Compd. 720, 562 (2017).CrossRefGoogle Scholar
  10. 10.
    Z.H. Chen, Z.W. Li, J.J. Ding, J.H. Qiu, and Y. Yang, J. Alloys Compd. 704, 193 (2017).CrossRefGoogle Scholar
  11. 11.
    Z.H. Chen, Z.W. Li, J.J. Ding, J.H. Qiu, and Y. Yang, J. Alloys Compd. 704, 141 (2017).CrossRefGoogle Scholar
  12. 12.
    C. Kuper, R. Pankrath, and H. Hesse, Appl. Phys. A 65, 301 (1997).CrossRefGoogle Scholar
  13. 13.
    Y.D. Hao, J.Q. Zhao, Y.K. Zheng, S.P. Gong, and D.X. Zhou, Mater. Sci. Eng. B 99, 516 (2003).CrossRefGoogle Scholar
  14. 14.
    B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (London: Academic, 1971).Google Scholar
  15. 15.
    M.L. Chen, Z.J. Xu, R.Q. Chu, Z. Wang, S.S. Gao, G.H. Yu, W. Li, S.W. Gong, and G.R. Li, Mater. Res. Bull. 59, 305 (2014).CrossRefGoogle Scholar
  16. 16.
    R.S. Sailva, L.M. Jesus, T.C. Oliverra, D.V. Sampaio, and J.C.A. Santos, J. Eur. Ceram. Soc. 36, 4023 (2016).CrossRefGoogle Scholar
  17. 17.
    M.R. Panigrahi and S. Panigrahi, Phys. B 405, 1787 (2010).CrossRefGoogle Scholar
  18. 18.
    M. Chen, Z. Xu, R. Chu, Y. Liu, L. Shao, W. Li, S. Gong, and G. Li, Mater. Lett. 97, 86 (2013).CrossRefGoogle Scholar
  19. 19.
    P. Long, X. Liu, X. Long, and Z. Yi, J. Alloys Compd. 706, 234 (2017).CrossRefGoogle Scholar
  20. 20.
    D. Liang, X. Zhu, Y. Zhang, W. Shi, and J. Zhu, Ceram. Int. 41, 8261 (2015).CrossRefGoogle Scholar
  21. 21.
    K.H. Yoon, J.H. Kim, K.H. Jo, H.I. Song, S.O. Yoon, and C.S. Kim, J. Mater. Sci. 23, 61 (1988).CrossRefGoogle Scholar
  22. 22.
    Y. Tian, L.L. Wei, X.L. Chao, Z.H. Liu, and Z.P. Yang, J. Am. Ceram. Soc. 96, 496 (2013).Google Scholar
  23. 23.
    W. Cao and C.A. Randall, J. Phys. Chem. Solids 57, 1499 (1996).CrossRefGoogle Scholar
  24. 24.
    W. Li, Z.J. Xue, R.Q. Chu, P. Fu, and G.Z. Zang, J. Am. Ceram. Soc. 94, 4131 (2011).CrossRefGoogle Scholar
  25. 25.
    N. Horchidan, A.C. Ianculescu, C.A. Vasilescu, M. Deluca, V. Musteata, H. Ursic, R. Frunza, B. Malic, and L. Mitoseriu, J. Eur. Ceram. 34, 3661 (2014).CrossRefGoogle Scholar
  26. 26.
    H. Orihara, S. Hashimoto, and Y. Ishibashi, J. Phys. Soc. Jpn. 63, 1031 (1994).CrossRefGoogle Scholar
  27. 27.
    J. Hao, W. Bai, W. Li, and J. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Province Cultivation Base for State Key Laboratory of Photovoltaic Science and TechnologyChangzhou UniversityChangzhouChina
  2. 2.Dalian Maritime UniversityDalianChina
  3. 3.Liaoning Jianzhu Vocational CollegeLiaoyangChina

Personalised recommendations