Skip to main content

Enhanced Circular Dichroism via Symmetry Breaking in a Chiral Plasmonic Nanoparticle Oligomer


A chiral plasmonic nanoparticle oligomer, consisting of four symmetrically arranged nanodisks of different heights and having different optical absorption responses to left and right-handed circularly polarized light illumination, has been experimentally reported in the literature. The resulting circular dichroism (CD) signal was detectable with state of the art CD spectrometers but was much weaker than those of existing chiral nanostructures, i.e., three-dimensional (3-D) chiral metamaterials. In this letter, via symmetry breaking in such an oligomer, the author demonstrates that the CD can be enhanced up to six times compared to that of a symmetric oligomer, and is in the range of a relevant 3-D chiral metamolecule. Through investigation of geometrical parameters including particle size, asymmetric and symmetric gaps, the CD evolution was reported, which provides a useful guideline for design of two-dimensional chiral oligomers adopted as efficient probes for CD spectroscopic applications.

This is a preview of subscription content, access via your institution.


  1. L.A. Nguyen, H. He, and C. Pham-Huy, Int. J. Biomed. Sci. 2, 85 (2006).

    Google Scholar 

  2. N. Berova, K. Nakanishi, and R.W. Woody, Circular Dichroism: Principles and Applications (New York: VCH, 1994).

    Google Scholar 

  3. J.B. Pendry, Science 306, 1353 (2004).

    Article  Google Scholar 

  4. A.D. Falco, Nat. Mater. 13, 846 (2014).

    Article  Google Scholar 

  5. N. Meinzer, E. Hendry, and W.L. Barnes, Phys. Rev. B 88, 041407(R) (2013).

    Article  Google Scholar 

  6. S.S. Oh and O. Hess, Nano Converg. 2, 24 (2015).

    Article  Google Scholar 

  7. T. Yasukawa, H. Miyamura, and S. Kobayashi, Chem. Soc. Rev. 43, 1450 (2014).

    Article  Google Scholar 

  8. S.J. Yoo and Q.-H. Park, Phys. Rev. Lett. 114, 203003 (2015).

    Article  Google Scholar 

  9. K.Q. Le, J. Electron. Mater. (2017).

    Google Scholar 

  10. E. Hendry, T. Carpy, J. Johnston, M. Popland, R.V. Mikhaylovskiy, A.J. Lapthorn, S.M. Kelly, L.D. Barron, N. Gadegaard, and M. Kadodwala, Nat. Nanotechnol. 5, 783 (2010).

    Article  Google Scholar 

  11. R. Ogier, Y. Fang, M. Svedendahl, P. Johannson, and M. Käll, ACS Photon. 1, 1074 (2014).

    Article  Google Scholar 

  12. U. Hohenester and A. Trügler, Comput. Phys. Commun. 183, 370 (2012).

    Article  Google Scholar 

  13. J.B. Johnson and R.W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  Google Scholar 

  14. F. Shafiei, F. Monticone, K.Q. Le, X.X. Liu, T. Hartsfield, A. Alù, and X. Li, Nat. Nanotechnol. 8, 95 (2013).

    Article  Google Scholar 

  15. V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, and M.A. Lati, J. Phys. Condens. Matter 29, 203002 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Khai Q. Le.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le, K.Q. Enhanced Circular Dichroism via Symmetry Breaking in a Chiral Plasmonic Nanoparticle Oligomer. J. Electron. Mater. 47, 2836–2840 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Circular dichroism
  • chiral plasmonic nanoparticle oligomer
  • symmetry breaking