Skip to main content

A Facile Large-Scale Synthesis of Porous SnO2 by Bronze for Superior Lithium Storage and Gas Sensing Properties Through a Wet Chemical Reaction Strategy

Abstract

A facile approach to prepare porous SnO2 and SnO2/C composite with Cu-Sn alloy as raw material by wet chemical reaction strategy has been developed. The prepared porous SnO2 and its carbon composite showed homogeneous mesoporous structure and high surface area, displayed superior rate performance and high reversible capacity of 625 mAh g−1 and 1185 mAh g−1 over 800 cycles at 0.4 A g−1, respectively. Compared with commercial SnO2, porous SnO2 sensor presented higher response, faster response/recovery capability, good selectivity and repeatability to ethanol at 180°C.

References

  1. S. Das and V. Jayaraman, Prog. Mater Sci. 66, 112 (2014).

    Article  Google Scholar 

  2. J.J. Yuan, C.H. Chen, Y. Hao, X.K. Zhang, B. Zou, R. Agrawal, C.L. Wang, H.J. Yu, X.R. Zhu, Y. Yu, Z.H. Xiong, Y. Luo, H.X. Li, and Y.M. Xie, J. Alloy. Compd. 691, 34 (2017).

    Article  Google Scholar 

  3. Y.L. Wei, C.L. Chen, G.Z. Yuan, and S. Gao, J. Alloy. Compd. 681, 43 (2016).

    Article  Google Scholar 

  4. H.M. Yang, G.G. Yu, and H.W. Liu, J. Electron. Mater. 44, 3744 (2015).

    Article  Google Scholar 

  5. B.X. Wang, Z.Q. Wang, Y.J. Cui, Y. Yang, Z.Y. Wang, and G.D. Qian, RSC Adv. 5, 84662 (2015).

    Article  Google Scholar 

  6. H.H. Xiao, F.Y. Qu, A. Umar, and X. Wu, Mater. Res. Bull. 74, 284 (2016).

    Article  Google Scholar 

  7. I. Castro-Hurtado, J. Gonzalez-Chavarri, S. Morandi, J. Sama, A. Romano-Rodriguez, E. Castano, and G.G. Mandayo, RSC Adv. 6, 18558 (2016).

    Article  Google Scholar 

  8. J.S. Chen, M.F. Ng, H.B. Wu, L. Zhang, and X.W. Lou, CrystEngComm 14, 5133 (2012).

    Article  Google Scholar 

  9. C.L. Zhang, J. Wang, R.J. Hu, Q. Qiao, and X.G. Li, Sens. Actuators B Chem. 222, 1134 (2016).

    Article  Google Scholar 

  10. P. Gurunathan, P.M. Ette, and K. Ramesha, ACS Appl. Mater. Interfaces. 6, 16556 (2014).

    Article  Google Scholar 

  11. X.S. Wang, H.Y. Li, M.C. Ni, L.Y. Wang, L. Liu, H. Wang, and X.X. Guo, J. Electron. Mater. 46, 363 (2017).

    Article  Google Scholar 

  12. Y. Wang, S.S. Niu, and S. Lu, Mater. Lett. 157, 209 (2015).

    Article  Google Scholar 

  13. J. Yang, X.N. Li, S.L. Bai, R.X. Luo, A.F. Chen, Y. Lin, and J.B. Zhang, Thin Solid Films 519, 6241 (2011).

    Article  Google Scholar 

  14. G. Liu, Z. Zhao, X. Jiao, and D. Chen, Mater. Technol. 29, 167 (2014).

    Article  Google Scholar 

  15. F. Li and Y.C. Zhu, J. Inorg. Mater. 27, 219 (2012).

    Article  Google Scholar 

  16. J. Liu, X.C. Tang, Y.H. Xiao, H. Jia, M.L. Gong, and F.Q. Huang, Mater. Sci. Eng. B Adv. 178, 1165 (2013).

    Article  Google Scholar 

  17. K. Iizuka, M. Kambara, and T. Yoshida, Sens. Actuators B Chem. 173, 455 (2012).

    Article  Google Scholar 

  18. T.Z. Yuan, Y.Z. Jiang, Y. Li, D. Zhang, and M. Yan, Electrochim. Acta 136, 27 (2014).

    Article  Google Scholar 

  19. S.P. Xu, F.Q. Sun, F.L. Gu, Y.B. Zuo, L.H. Zhang, C.F. Fan, S.M. Yang, and W.S. Li, ACS Appl. Mater. Interfaces. 6, 1251 (2014).

    Article  Google Scholar 

  20. X. Sun, Y. Huang, M. Zong, H.W. Wu, and X. Ding, J. Mater. Sci.: Mater. Electron. 27, 2682 (2016).

    Google Scholar 

  21. A. Kar and A. Patra, J. Mater. Chem. C 2, 6706 (2014).

    Article  Google Scholar 

  22. S.S. Pan and G.H. Li, Recent Pat. Nanotechnol. 5, 138 (2011).

    Article  Google Scholar 

  23. J.S. Chen and X.W. Lou, Mater. Today 15, 246 (2012).

    Article  Google Scholar 

  24. M. Shahid, N. Yesibolati, M.C. Reuter, F.M. Ross, and H.N. Alshareef, J. Power Sources 263, 239 (2014).

    Article  Google Scholar 

  25. L. Yuan, Z.P. Guo, K. Konstantinov, H.K. Liu, and S.X. Dou, J. Power Sources 159, 345 (2006).

    Article  Google Scholar 

  26. W.H. Zhang and W.D. Zhang, Sens. Actuators B Chem. 134, 403 (2008).

    Article  Google Scholar 

  27. L. Liu, M. An, P. Yang, and J. Zhang, Sci. Rep. UK 5, 9055 (2015).

    Article  Google Scholar 

  28. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Pöschl, Carbon 43, 1731 (2005).

    Article  Google Scholar 

  29. J. Hoekstra, A.M. Beale, F. Soulimani, M. Versluijshelder, J.W. Geus, and L.W. Jenneskens, J. Phys. Chem. C 119, 150415151254009 (2015).

    Article  Google Scholar 

  30. S.L. Rebelo, A. Guedes, M.E. Szefczyk, A.M. Pereira, J.P. Araújo, and C. Freire, Phys. Chem. Chem. Phys. 18, 12784 (2016).

    Article  Google Scholar 

  31. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S.R.P. Silva, J. Appl. Phys. 80, 440 (1996).

    Article  Google Scholar 

  32. R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, and B. Sahoo, Phys. Chem. Chem. Phys. 19, 23268 (2017).

    Article  Google Scholar 

  33. R. Tian, Y. Zhang, Z. Chen, H. Duan, B. Xu, Y. Guo, H. Kang, H. Li, and H. Liu, Sci. Rep. UK 6, 19195 (2016).

    Article  Google Scholar 

  34. Y.F. Deng, C.C. Fang, and G.H. Chen, J. Power Sources 304, 81 (2016).

    Article  Google Scholar 

  35. X.L. Fan, J. Shao, X.Z. Xiao, X.H. Wang, S.Q. Li, H.W. Ge, L.X. Chen, and C.S. Wang, J. Mater. Chem. A 2, 18367 (2014).

    Article  Google Scholar 

  36. L. Yue, C. Xue, B.B. Huang, N. Xu, R.F. Guan, Q.F. Zhang, and W.H. Zhang, Electrochim. Acta 220, 222 (2016).

    Article  Google Scholar 

  37. X. Lu, H.K. Wang, Z.Y. Wang, Y.Z. Jiang, D.X. Cao, and G. Yang, J. Alloy. Compd. 680, 109 (2016)

  38. D. Zhou, W.L. Song, X.G. Li, and L.Z. Fan, Electrochim. Acta 207, 9 (2016)

  39. J. Wu, H. Chen, I. Byrd, S. Lovelace, and C.R. Jin, ACS Appl. Mater. Inter. 8, 13946 (2016)

  40. D. Zhou, W.L. Song, X.G. Li, and L.Z. Fan, ACS Appl. Mater. Inter. 8, 13410 (2016)

  41. C. Zhu, S. Zhu, K. Zhang, Z. Hui, H. Pan, Z. Chen, Y. Li, D. Zhang, and D.W. Wang, Sci. Rep.-UK 6 (2016)

  42. Q.N. Liu, Y.H. Dou, B.Y. Ruan, Z.Q. Sun, S.L. Chou, and S.X. Dou, Chem. Eur. J. 22, 5853 (2016)

  43. M.S. Wang, M. Lei, Z.Q. Wang, X. Zhao, J. Xu, W. Yang, Y. Huang, and X. Li, J. Power Sources 309, 238 (2016)

  44. H.R. Xue, J.Q. Zhao, J. Tang, H. Gong, P. He, H.S. Zhou, Y. Yamauchi, and J.P. He, Chem. Eur. J. 22, 4915 (2016)

  45. X.L. Li, X.L. Zhang, Y.J. Zhao, D.M. Feng, Z.L. Su, and Y.Y. Zhang, Electrochim. Acta 191, 215 (2016)

  46. X.S. Zhou, L. Yu, and X.W. Lou, Nanoscale 8, 8384 (2016)

  47. L. Xia, S.Q. Wang, G.X. Liu, L.X. Ding, D.D. Li, H.H. Wang, and S.Z. Qiao, Small 12, 853 (2016)

  48. M.H. Wang, H. Yang, X.L. Zhou, W. Shi, Z. Zhou, and P. Cheng, Chem. Commun. 52, 717 (2016)

  49. X. Li, Y. Zhang, H.J. Zhang, Y.Y. Feng, and Y. Wang, Electrochim. Acta 195, 208 (2016)

  50. Y.X. Wan, Y. Sha, S.C. Luo, W.J. Deng, X.L. Wang, G. Xue, and D.S. Zhou, J. Power Sources 295, 41 (2015)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51402252), Natural Science Foundation of Jiangsu Province (Nos. BK20140463, BK20150423), and National High Technology Research and Development Program of China (No. 2015AA021003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongfeng Guan or Wenhui Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Ge, J., Luo, G. et al. A Facile Large-Scale Synthesis of Porous SnO2 by Bronze for Superior Lithium Storage and Gas Sensing Properties Through a Wet Chemical Reaction Strategy. J. Electron. Mater. 47, 2545–2556 (2018). https://doi.org/10.1007/s11664-018-6130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6130-z

Keywords

  • Porous SnO2
  • wet chemical reaction
  • carbon composite
  • lithium-ion battery
  • gas sensing properties