Recrystallization Behavior in Mixed Solder Joints of BGA Components during Thermal Shock



Sn-37Pb and Sn-3.0Ag-0.5Cu solder pastes printed onto a board were attached to ball grid array (BGA) samples using Sn-3.0Ag-0.5Cu solder balls. Before thermal shock, the initial grain orientations on the cross-section were obtained by scanning electron microscopy equipped with an electron backscattered diffraction system. Three mixed solder joints (two from the corner and another from the middle of the BGA component) and three lead-free solder joints (at the same positions) were selected to investigate the recrystallization behavior under thermal shock (TS) cycling conditions. All of the mixed and lead-free solder joints were initially single crystal. The results showed that recrystallization occurred in both the mixed and lead-free solder joints after 200 TS. For the mixed solder joints, more recrystallization was observed and the location of samples had a significant influence on their recrystallization behavior, while location was not as important for the lead-free samples after 200 TS in this study. Both the mixed and lead-free solder joints at the corner of BGA components showed the poorest reliability. According to misorientation distribution maps and subgrain rotation behaviors, the reliability of mixed solder joints was much poorer than that of lead-free solder joints.


Mixed solder joint microstructure subgrain rotation recrystallization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge support of this work by the National Natural Science Foundation of China (No. 51401006), Beijing Natural Science Foundation (Nos. 2162005 and 2172009), and Science and Technology Project of Beijing Municipal Education Commission (No. KM201710005003).


  1. 1.
    O.Y. Liashenko, S. Lay, and F. Hodaj, Acta Mater. 117, 216 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Mukherjee, B. Zhou, A. Dasgupta, and T.R. Bieler, Int. J. Plast. 78, 1 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Han, S. Tan, and F. Guo, J. Electron. Mater. 45, 6086 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Tan, J. Han, and F. Guo, J. Mater. Sci. Mater. Electron. 27, 9642 (2016).CrossRefGoogle Scholar
  5. 5.
    V.L. Nguyen, C.S. Chung, and H.K. Kim, J. Electron. Mater. 45, 125 (2016).CrossRefGoogle Scholar
  6. 6.
    Y.W. Wang, K.H. Lu, V. Gupta, L. Stiborek, D. Shirley, S.H. Chae, J. Im, and P.S. Ho, J. Mater. Res. 27, 1131 (2012).CrossRefGoogle Scholar
  7. 7.
    A. Haseeb, Y.M. Leong, and M.M. Arafat, Intermetallics 54, 86 (2014).CrossRefGoogle Scholar
  8. 8.
    J.W. Yoon, J.H. Bang, C.W. Lee, and S.B. Jung, J. Alloys Compd. 627, 276 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Hokka, T.T. Mattila, H.B. Xu, and M. Paulasto-Krockel, J. Electron. Mater. 42, 963 (2013).CrossRefGoogle Scholar
  10. 10.
    B.T. Zhou, G. Muralidharan, K. Kurumadalli, C.M. Parish, S. Leslie, and T.R. Bieler, J. Electron. Mater. 43, 57 (2014).CrossRefGoogle Scholar
  11. 11.
    F.G.J. Han and J.P. Liu, J. Alloys Compd. 698, 706 (2017).CrossRefGoogle Scholar
  12. 12.
    X. Xu, G.Q. Chen, and M.S. Cheng, in 2015 16th International Conference on Electronic Packaging Technology (2015).Google Scholar
  13. 13.
    B.T. Zhou, T.R. Bieler, T.K. Lee, and W.J. Liu, J. Electron. Mater. 42, 319 (2013).CrossRefGoogle Scholar
  14. 14.
    T.R. Bieler, B.T. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.K. Lee, and K.C. Liu, J. Electron. Mater. 41, 283 (2012).CrossRefGoogle Scholar
  15. 15.
    T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, and E.J. Cotts, in Proceedings of 56th Electronic Components & Technology Conference 2006, IEEE. vol 1 and 2, p. 1462 (2006).Google Scholar
  16. 16.
    B.T. Zhou, Q. Zhou, T.R. Bieler, and T.K. Lee, J. Electron. Mater. 44, 895 (2015).CrossRefGoogle Scholar
  17. 17.
    D.H. Yang, J. Cai, Q. Wang, J.W. Li, Y. Hu, and L.L. Li, J. Mater. Sci. Mater. Electron. 26, 962 (2015).CrossRefGoogle Scholar
  18. 18.
    J.B. Chen, Y.F. Yin, J.P. Ye, and Y.P. Wu, Solder. Surf. Mt. Technol. 27, 76 (2015).CrossRefGoogle Scholar
  19. 19.
    M. Meilunas and P. Borgesen, J. Electron. Packag. 133, 021001 (2011).CrossRefGoogle Scholar
  20. 20.
    A.R. Zbrzezny, P. Snugovsky, T. Lindsay, and R. Lau, IEEE Trans. Electron. Packag. 29, 211 (2006).CrossRefGoogle Scholar
  21. 21.
    Y. Qi, H.R. Ghorbani, and J.K. Spelt, IEEE Trans. Adv. Packag. 29, 690 (2006).CrossRefGoogle Scholar
  22. 22.
    P. Borgesen and M. Meilunas, IEEE Trans. Compon. Packag. Manuf. 1, 1205 (2011).CrossRefGoogle Scholar
  23. 23.
    L. Zhang, L. Sun, Y.H. Guo, and C.W. He, J. Mater. Sci. Mater. Electron. 25, 1209 (2014).CrossRefGoogle Scholar
  24. 24.
    C. Han and B. Han, J. Mech. Sci. Technol. 28, 879 (2014).CrossRefGoogle Scholar
  25. 25.
    J. Johansson, I. Belov, E. Johnson, and P. Leisner, Eng. Comput. 31, 467 (2014).CrossRefGoogle Scholar
  26. 26.
    M.T. Lyttle and J.A. Wert, J. Mater. Sci. 29, 3342 (1994).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina

Personalised recommendations