Skip to main content
Log in

Electrical Characterization of Graphite/InP Schottky Diodes by I–V–T and C–V Methods

  • Topical Collection: 17th Conference on Defects (DRIP XVII)
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A rectifying junction was prepared by casting a drop of colloidal graphite on the surface of an InP substrate. The electrophysical properties of graphite/InP junctions were investigated in a wide temperature range. Temperature-dependent I–V characteristics of the graphite/InP junctions are explained by the thermionic emission mechanism. The Schottky barrier height (SBH) and the ideality factor were found to be 0.9 eV and 1.47, respectively. The large value of the SBH and its weak temperature dependence are explained by lateral homogeneity of the junction, which is related to the structure of the graphite layer. The moderate disagreement between the current–voltage and capacitance–voltage measurements is attributed to the formation of interfacial native oxide film on the InP surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, IEEE J. Quantum Electron. 23, 1410 (1987).

    Article  Google Scholar 

  2. M.C. Tamargo, W. Lin, S.P. Guo, Y. Guo, Y. Luo, and Y.C. Chen, J. Cryst. Growth 214, 1058 (2000).

    Article  Google Scholar 

  3. W.H. Haydl, H.D. Muller, H. Ennen, W. Korber, and K.W. Benz, Appl. Phys. Lett. 46, 870 (1985).

    Article  Google Scholar 

  4. Z.C. Wang, B. Tian, M. Pantouvaki, W.M. Guo, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, Nat. Photonics 9, 837 (2015).

    Article  Google Scholar 

  5. S.J. Kim, J.C. Jeong, G.P. Vellacoleiro, and P.R. Smith, IEEE Electron Device Lett. 11, 57 (1990).

    Article  Google Scholar 

  6. W. Hafez and M. Feng, Appl. Phys. Lett. 86, 3 (2005).

    Article  Google Scholar 

  7. W. Nakwaski, J. Appl. Phys. 64, 159 (1988).

    Article  Google Scholar 

  8. H. Temkin, S. Mahajan, M.A. Digiuseppe, and A.G. Dentai, Appl. Phys. Lett. 40, 562 (1982).

    Article  Google Scholar 

  9. H. Cetin and E. Ayyildiz, Semicond. Sci. Technol. 20, 625 (2005).

    Article  Google Scholar 

  10. J.D. Dow and R.E. Allen, J. Vac. Sci. Technol. 20, 659 (1982).

    Article  Google Scholar 

  11. S. Tongay, T. Schumann, and A.F. Hebard, Appl. Phys. Lett. 95, 3 (2009).

    Article  Google Scholar 

  12. C.C. Chen, M. Aykol, C.C. Chang, A.F.J. Levi, and S.B. Cronin, Nano Lett. 11, 1863 (2011).

    Article  Google Scholar 

  13. L.A. Kosyachenko, R. Yatskiv, N.S. Yurtsenyuk, O.L. Maslyanchuk, and J. Grym, Semicond. Sci. Technol. 29, 10 (2014).

    Article  Google Scholar 

  14. Y. Song, X.M. Li, C. Mackin, X. Zhang, W.J. Fang, T. Palacios, H.W. Zhu, and J. Kong, Nano Lett. 15, 2104 (2015).

    Article  Google Scholar 

  15. R. Yatskiv, J. Grym, and M. Verde, Solid-State Electron. 105, 70 (2015).

    Article  Google Scholar 

  16. R. Yatskiv, J. Grym, P. Gladkov, O. Cernohorsky, J. Vanis, J. Maixner, and J.H. Dickerson, Solid-State Electron. 116, 124 (2016).

    Article  Google Scholar 

  17. A.C. Ferrari, A. Li Bassi, B.K. Tanner, V. Stolojan, J. Yuan, L.M. Brown, S.E. Rodil, B. Kleinsorge, and J. Robertson, Phys. Rev. B 62, 11089 (2000).

    Article  Google Scholar 

  18. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).

    Article  Google Scholar 

  19. S.M. Sze, Physics of Semiconductor Devices, 3rd ed. (New Jersey: Wiley, 2007), pp. 136–139.

    Google Scholar 

  20. H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 1589 (1971).

    Article  Google Scholar 

  21. R.T. Tung, Mater. Sci. Eng., R 35, 1 (2001).

    Article  Google Scholar 

  22. A. Gocalinska, S. Rubini, and E. Pelucchi, Appl. Surf. Sci. 383, 19 (2016).

    Article  Google Scholar 

  23. K.P. Pande and C.C. Shen, J. Appl. Phys. 53, 749 (1982).

    Article  Google Scholar 

  24. H. Cetin and E. Ayyildiz, Appl. Surf. Sci. 253, 5961 (2007).

    Article  Google Scholar 

  25. N. Newman, T. Kendelewicz, L. Bowman, and W.E. Spicer, Appl. Phys. Lett. 46, 1176 (1985).

    Article  Google Scholar 

  26. L.J. Brillson, C.F. Brucker, A.D. Katnani, N.G. Stoffel, R. Daniels, and G. Margaritondo, J. Vac. Sci. Technol. 21, 564 (1982).

    Article  Google Scholar 

  27. R.H. Williams, V. Montgomery, and R.R. Varma, J. Phys. C: Solid State Phys. 11, L735 (1978).

    Article  Google Scholar 

  28. N. Ooi, A. Rairkar, and J.B. Adams, Carbon 44, 231 (2006).

    Article  Google Scholar 

  29. L. Valentini, V. Salerni, I. Armentano, J.M. Kenny, L. Lozzi, and S. Santucci, J. Non-Cryst. Solids 321, 175 (2003).

    Article  Google Scholar 

  30. J. Robertson, Adv. Phys. 35, 317 (1986).

    Article  Google Scholar 

  31. J. Robertson and E.P. Oreilly, Phys. Rev. B 35, 2946 (1987).

    Article  Google Scholar 

  32. M. Kracica, E.L.H. Mayes, H.N. Tran, A.S. Holland, D.G. McCulloch, and J.G. Partridge, Carbon 102, 141 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Tiagulskyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiagulskyi, S., Yatskiv, R. & Grym, J. Electrical Characterization of Graphite/InP Schottky Diodes by I–V–T and C–V Methods. J. Electron. Mater. 47, 4950–4954 (2018). https://doi.org/10.1007/s11664-018-6123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6123-y

Keywords

Navigation