Skip to main content

A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints

Abstract

The present work offers both a complete, quantitative model and a conservative acceleration factor expression for the life span of SnAgCu solder joints in thermal cycling. A broad range of thermal cycling experiments, conducted over many years, has revealed a series of systematic trends that are not compatible with common damage functions or constitutive relations. Complementary mechanical testing and systematic studies of the evolution of the microstructure and damage have led to a fundamental understanding of the progression of thermal fatigue and failure. A special experiment was developed to allow the effective deconstruction of conventional thermal cycling experiments and the finalization of our model. According to this model, the evolution of damage and failure in thermal cycling is controlled by a continuous recrystallization process which is dominated by the coalescence and rotation of dislocation cell structures continuously added to during the high-temperature dwell. The dominance of this dynamic recrystallization contribution is not consistent with the common assumption of a correlation between the number of cycles to failure and the total work done on the solder joint in question in each cycle. It is, however, consistent with an apparent dependence on the work done during the high-temperature dwell. Importantly, the onset of this recrystallization is delayed by pinning on the Ag3Sn precipitates until these have coarsened sufficiently, leading to a model with two terms where one tends to dominate in service and the other in accelerated thermal cycling tests. Accumulation of damage under realistic service conditions with varying dwell temperatures and times is also addressed.

References

  1. L. Wentlent, L. Yin, M. Meilunas, B. Arfaei, and B. Borgesen, in Proceedings of SMTA International Conference, p. 101, 2011.

  2. P. Borgesen, E. Al-Momani, and M. Meilunas, in Proceedings of SMTA, 2009.

  3. P. Borgesen, J. Jiang, L. Wentlent, M. Meilunas, R. Sivasubramony, L. E. Alvarez, T. Alghoul, and C. Greene, in Proceedings of SMTA International, Rosemont, IL, USA, 2017.

  4. L. Lehman, Y. Xing, T. Bieler, and E. Cotts, Acta Mater. 58, 3546 (2010).

    Article  Google Scholar 

  5. D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, S.K. Kang, P. Lauro, D.-Y. Shih, C. Goldsmith, and K.J. Puttlitz, J. Mater. Res. 19, 1608 (2004).

    Article  Google Scholar 

  6. S. Terashima, T. Kobayashi, and M. Tanaka, Sci. Technol. Weld. Join. 13, 732 (2008).

    Article  Google Scholar 

  7. S. Terashima, K. Takahama, M. Nozaki, and M. Tanaka, Mater. Trans. 45, 1383 (2004).

    Article  Google Scholar 

  8. U. Telang, R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).

    Article  Google Scholar 

  9. J. Sundelin, S. Nurmi, and T. Lepistö, Mater. Sci. Eng. A 474, 201 (2008).

    Article  Google Scholar 

  10. T. Mattila, and J. Kivilahti, IEEE Trans. Compon. Packag. Manuf. Technol. 33, 629 (2010).

    Article  Google Scholar 

  11. A. Qasaimeh, S. Lu, and P. Borgesen, in Components Packaging Manufacturing Technology Conference, 2011.

  12. L. Yin, L. Wentlent, L. Yang, B. Arfaei, A. Qasaimeh, and P. Borgesen, J. Electron. Mater. 41, 241 (2012).

    Article  Google Scholar 

  13. L. Yin, M. Meilunas, B. Arfaei, L. Wentlent, and P. Borgesen, in Proceedings of Electronic Components Technology Conference, 2012.

  14. A. Dasgupta, C. Oman, D. Barker, and M. Petit, AMSE J. Electron. Packag. 114, 152 (1992).

    Article  Google Scholar 

  15. A. Qasaimeh, Y. Jaradat, L. Wentlent, L. Yang, L. Yin, B. Arfaei, and P. Borgesen, in Electronic Components and Technology Conference, pp. 1775–1781, 2011.

  16. A. Schubert, R. Dudek, E. Auerswald, M. Gollbardt, and H. Reichl, Components Packaging Manufacturing Technology Conference, p. 603, 2003.

  17. A. Syed, in Proceedings of Electronic Components and Technology Conference, Las Vegas, NV, USA, USA, 2004.

  18. H. S. Ng, T. Payoh, T. Y. Tee, K. Y. Goh, J. Luan, T. Reinikainen, and A. Kujala, in Proceedings of Components Packaging Manufacturing Technology Conference, Lake Buena Vista, Fl, USA, 2005.

  19. C. Basaran, and C.-Y. Yan, J. Electron. Packag. 120, 379 (1998).

    Article  Google Scholar 

  20. D. Chan, L. Subbarayan, and L. Nguyen, J. Electron. Mater. 41, 398 (2012).

    Article  Google Scholar 

  21. J. Hokka, T.T. Mattila, H. Xu, and M. Paulasto-Krockel, J. Electron. Mater. 42, 963 (2013).

    Article  Google Scholar 

  22. B. Arfaei, S. Mahin-Shirazi, S. Joshi, M. Anselm, P. Borgesen, E. Cotts, J. Wilcox, and R. Coyle, in Proc. Electron. Compon. Technol. Conf., Las Vegas, NV, USA, 2013.

  23. T. Bieler, P. Borgesen, Y. Xing, L. Lehman, and E. Cotts, in Pb-Free and RoHS-Compliant Materials and Processes for Microelectronics, 2007, C.A Handwerker, K. Suganuma, H.L. Reynolds, J. Bath, eds, MRS Spring Meeting.

  24. T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 41, 283 (2012).

    Article  Google Scholar 

  25. B. Arfaei, Y. Xing, J. Woods, J. Wolcott, P. Tumne, P. Borgesen, and E. Cotts, in Proceedings Electronic Components and Technology Conference, 2008.

  26. B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 39, 2669 (2010).

    Article  Google Scholar 

  27. R.D. Doherty, D.A. Hughes, F.J. Humpreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. 238, 219 (1997).

    Article  Google Scholar 

  28. R.W. Vook, Acta Met. 12, 197 (1964).

    Article  Google Scholar 

  29. R. Madec, B. Devincre, and L.P. Kubin, Scr. Mater. 47, 689 (2002).

    Article  Google Scholar 

  30. M. Kerr, and N. Chawla, Acta Mater. 52, 4527 (2004).

    Article  Google Scholar 

  31. G. Cuddalorepatta, A. Dasgupta, and K. Holdermann, in Proceedings of IMECE 2008, Boston, MA, 2008.

  32. A. Mayyas, L. Yin, and P. Borgesen, Proc. ASME Int., p. 319, 2009.

  33. A. Qasaimeh, Ph.D. Dissertation, Binghamton University, May 2012.

  34. T. Korhonen, L. Lehman, M. Korhonen, and D. Henderson, J. Electron. Mater. 36, 173 (2007).

    Article  Google Scholar 

  35. P. Borgesen, L. Yang, A. Qasaimeh, L. Yin, and M. Anselm, in Proceedings of SMTA PanPac Conference, 2013.

  36. B. Arfaei, M. Anselm, S. Joshi, S. Mahin-Shirazi, E. Cotts, P. Borgesen, J. Wilcox, and R. Coyle, in Proceedings SMTAI, Rosemont, IL, 2013.

  37. D. Schmitz, S. Shirazi, L. Wentlent, S. Hamasha, L. Yin, A. Qasaimeh, and P. Borgesen, in Proceedings of Components, Packagings Manufacturing Technology, Orlando, FL, USA, 2014.

  38. F.J. Humphreys, and M. Hatherly, Recrystallization and Related Annealing Phenomena (Oxford: Pergamon Press, 1995).

    Google Scholar 

  39. I. Dutta, J. Electron. Mater. 32, 201 (2003).

    Article  Google Scholar 

  40. J. Li, T.T. Mattila, and J.K. Kivilahti, J. Electron. Mater. 39, 77 (2010).

    Article  Google Scholar 

  41. J. Li, H. Xu, T.T. Mattila, J.K. Kivilahti, T. Laurila, and M. Palasto-Krockel, Comput. Mater. Sci. 50, 690 (2010).

    Article  Google Scholar 

  42. A.D. Rollette, and D. Raabe, Comput. Mater. Sci. 21, 69 (2001).

    Article  Google Scholar 

  43. X. Song, and M. Rettenmayr, Mater. Sci. Eng. 332, 153 (2002).

    Article  Google Scholar 

  44. Q. Yu, and S.K. Esche, J. Mater. Process. Technol. 169, 493 (2005).

    Article  Google Scholar 

  45. F.J. Humphreys, and M.G. Ardakani, Acta Mater. 44, 2717 (1996).

    Article  Google Scholar 

  46. S. Shirazi, L. Yin, S. Khasawneh, L. Wentlent, and P. Borgesen, in Proceedings of Components, Packaging, and Manufacturing Technology, San Diego, CA, USA, 2015.

  47. T. Alghoul, D. Watson, N. Adams, S. Khasawneh, F. Batieha, C. Greene, and P. Borgesen, in 66th Electronic Components and Technology Conference, 2016.

  48. P. Borgesen, E. Cotts, and I. Dutta, in SERDP Grant, Project WP-1752, 2015.

  49. H. Song, J. Morris, and F. Hua, JOM 54, 30 (2002).

    Article  Google Scholar 

  50. P. Kumar, Z. Huang, S. Chavali, D. Chan, I. Dutta, G. Subbarayan, and V. Gupta, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 256 (2012).

    Article  Google Scholar 

  51. M. Motalab, Z. Cai, S. P., and P. Lall, in 13th IEEE Intersociety Conference on Thermal Thermomechanical Phenom Electronics System, San Diego, CA, USA, 2012.

  52. S. Wiese, F. Feustel, and E. Meusel, Sens. Actuators A 99, 188 (2002).

    Article  Google Scholar 

  53. M. Amagai, M. Watanabe, M. Omiya, K. Kishimoto, and T. Shibuya, Microelectron. Reliab. 42, 951 (2002).

    Article  Google Scholar 

  54. M. Pei, and J. Qu, in Proc. Int. Symp. Adv. Packag. Mater.: Processes, Prop. Interfaces, Irvine, CA, USA, USA, pp. 45–49, 2005.

  55. H. Ng, T. Tee, K. Goh, J. Luan, T. Reinikainen, E. Hussa, and A. Kujala, in Proceedings of Components Packaging Manufacturing Technology, Lake Buena Vista, FL, USA, 2005.

  56. M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. 36, 99 (2005).

    Article  Google Scholar 

  57. I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng. 379, 401 (2004).

    Article  Google Scholar 

  58. A.S. Argon, Scr. Metall. 4, 1001 (1970).

    Article  Google Scholar 

  59. P. Borgesen, S. Hamasha, L. Wentlent, D. Watson, and C. Greene, in Proceedings of SMTA PanPac Conference, Big Island, HI, USA, 2016.

  60. S. Joshi, B. Arfaei, A. Singh, M. Gharaibeh, M. Obaidat, A. Alazzam, M. Meilunas, L. Yin, M. Anselm, and P. Borgesen, in Proceedings of SMTAI, Rosemont, IL, 2012.

  61. E.A. Brandes, Smithells Metals Reference Book, 7th ed. (London: Butterworth, 1992).

    Google Scholar 

  62. U. Sahaym, B. Talebanpour, I. Dutta, P. Kumar, and P. Borgesen, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 1868 (2013).

    Article  Google Scholar 

  63. S. Hamasha, A. Qasaimeh, Y. Jaradat, and P. Borgesen, IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1292 (2015).

    Article  Google Scholar 

  64. A. Qasaimeh, S. Hamasha, Y. Jaradat, and P. Borgesen, J. Electron. Packag. 137, 021012 (2015).

    Article  Google Scholar 

  65. F. Batieha, S. Hamasha, Y. Jaradat, L. Wentlent, A. Qasaimeh, and P. Borgesen, in Electronic Components and Technology Conference, 2015.

  66. P. Borgesen, S. Hamasha, M. Obaidat, V. Raghavan, X. Dai, M. Meilunas, and M. Anselm, Microelectron. Reliab. 53, 1587 (2013).

    Article  Google Scholar 

  67. Q. Zhou, B. Zhou, T.-K. Lee, and T. Bieler, J. Electron. Mater. 45, 3013 (2016).

    Article  Google Scholar 

  68. B. Zhou, T. Bieler, T.-K. Lee, and W. Liu, J. Electron. Mater. 42, 319 (2013).

    Article  Google Scholar 

  69. B. Zhou, Q. Zhou, T. Bieler, and T.-K. Lee, J. Electron. Mater. 44, 895 (2015).

    Article  Google Scholar 

  70. P. Borgesen, L. Yang, B. Arfaei, L. Yin, B. Roggeman, and M. Meilunas, in SMTA Proceedings of Technology Program - Pan Pacific Microelectronics Symposium, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Borgesen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borgesen, P., Wentlent, L., Hamasha, S. et al. A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints. J. Electron. Mater. 47, 2526–2544 (2018). https://doi.org/10.1007/s11664-018-6121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6121-0

Keywords

  • Reliability
  • thermal cycling
  • model
  • acceleration factor
  • solder