Journal of Electronic Materials

, Volume 47, Issue 5, pp 2526–2544 | Cite as

A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints

  • Peter Borgesen
  • Luke Wentlent
  • Sa’d Hamasha
  • Saif Khasawneh
  • Sam Shirazi
  • Debora Schmitz
  • Thaer Alghoul
  • Chris Greene
  • Liang Yin


The present work offers both a complete, quantitative model and a conservative acceleration factor expression for the life span of SnAgCu solder joints in thermal cycling. A broad range of thermal cycling experiments, conducted over many years, has revealed a series of systematic trends that are not compatible with common damage functions or constitutive relations. Complementary mechanical testing and systematic studies of the evolution of the microstructure and damage have led to a fundamental understanding of the progression of thermal fatigue and failure. A special experiment was developed to allow the effective deconstruction of conventional thermal cycling experiments and the finalization of our model. According to this model, the evolution of damage and failure in thermal cycling is controlled by a continuous recrystallization process which is dominated by the coalescence and rotation of dislocation cell structures continuously added to during the high-temperature dwell. The dominance of this dynamic recrystallization contribution is not consistent with the common assumption of a correlation between the number of cycles to failure and the total work done on the solder joint in question in each cycle. It is, however, consistent with an apparent dependence on the work done during the high-temperature dwell. Importantly, the onset of this recrystallization is delayed by pinning on the Ag3Sn precipitates until these have coarsened sufficiently, leading to a model with two terms where one tends to dominate in service and the other in accelerated thermal cycling tests. Accumulation of damage under realistic service conditions with varying dwell temperatures and times is also addressed.


Reliability thermal cycling model acceleration factor solder 


  1. 1.
    L. Wentlent, L. Yin, M. Meilunas, B. Arfaei, and B. Borgesen, in Proceedings of SMTA International Conference, p. 101, 2011.Google Scholar
  2. 2.
    P. Borgesen, E. Al-Momani, and M. Meilunas, in Proceedings of SMTA, 2009.Google Scholar
  3. 3.
    P. Borgesen, J. Jiang, L. Wentlent, M. Meilunas, R. Sivasubramony, L. E. Alvarez, T. Alghoul, and C. Greene, in Proceedings of SMTA International, Rosemont, IL, USA, 2017.Google Scholar
  4. 4.
    L. Lehman, Y. Xing, T. Bieler, and E. Cotts, Acta Mater. 58, 3546 (2010).CrossRefGoogle Scholar
  5. 5.
    D.W. Henderson, J.J. Woods, T.A. Gosselin, J. Bartelo, D.E. King, T.M. Korhonen, M.A. Korhonen, L.P. Lehman, E.J. Cotts, S.K. Kang, P. Lauro, D.-Y. Shih, C. Goldsmith, and K.J. Puttlitz, J. Mater. Res. 19, 1608 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Terashima, T. Kobayashi, and M. Tanaka, Sci. Technol. Weld. Join. 13, 732 (2008).CrossRefGoogle Scholar
  7. 7.
    S. Terashima, K. Takahama, M. Nozaki, and M. Tanaka, Mater. Trans. 45, 1383 (2004).CrossRefGoogle Scholar
  8. 8.
    U. Telang, R. Bieler, A. Zamiri, and F. Pourboghrat, Acta Mater. 55, 2265 (2007).CrossRefGoogle Scholar
  9. 9.
    J. Sundelin, S. Nurmi, and T. Lepistö, Mater. Sci. Eng. A 474, 201 (2008).CrossRefGoogle Scholar
  10. 10.
    T. Mattila, and J. Kivilahti, IEEE Trans. Compon. Packag. Manuf. Technol. 33, 629 (2010).CrossRefGoogle Scholar
  11. 11.
    A. Qasaimeh, S. Lu, and P. Borgesen, in Components Packaging Manufacturing Technology Conference, 2011.Google Scholar
  12. 12.
    L. Yin, L. Wentlent, L. Yang, B. Arfaei, A. Qasaimeh, and P. Borgesen, J. Electron. Mater. 41, 241 (2012).CrossRefGoogle Scholar
  13. 13.
    L. Yin, M. Meilunas, B. Arfaei, L. Wentlent, and P. Borgesen, in Proceedings of Electronic Components Technology Conference, 2012.Google Scholar
  14. 14.
    A. Dasgupta, C. Oman, D. Barker, and M. Petit, AMSE J. Electron. Packag. 114, 152 (1992).CrossRefGoogle Scholar
  15. 15.
    A. Qasaimeh, Y. Jaradat, L. Wentlent, L. Yang, L. Yin, B. Arfaei, and P. Borgesen, in Electronic Components and Technology Conference, pp. 1775–1781, 2011.Google Scholar
  16. 16.
    A. Schubert, R. Dudek, E. Auerswald, M. Gollbardt, and H. Reichl, Components Packaging Manufacturing Technology Conference, p. 603, 2003.Google Scholar
  17. 17.
    A. Syed, in Proceedings of Electronic Components and Technology Conference, Las Vegas, NV, USA, USA, 2004.Google Scholar
  18. 18.
    H. S. Ng, T. Payoh, T. Y. Tee, K. Y. Goh, J. Luan, T. Reinikainen, and A. Kujala, in Proceedings of Components Packaging Manufacturing Technology Conference, Lake Buena Vista, Fl, USA, 2005.Google Scholar
  19. 19.
    C. Basaran, and C.-Y. Yan, J. Electron. Packag. 120, 379 (1998).CrossRefGoogle Scholar
  20. 20.
    D. Chan, L. Subbarayan, and L. Nguyen, J. Electron. Mater. 41, 398 (2012).CrossRefGoogle Scholar
  21. 21.
    J. Hokka, T.T. Mattila, H. Xu, and M. Paulasto-Krockel, J. Electron. Mater. 42, 963 (2013).CrossRefGoogle Scholar
  22. 22.
    B. Arfaei, S. Mahin-Shirazi, S. Joshi, M. Anselm, P. Borgesen, E. Cotts, J. Wilcox, and R. Coyle, in Proc. Electron. Compon. Technol. Conf., Las Vegas, NV, USA, 2013.Google Scholar
  23. 23.
    T. Bieler, P. Borgesen, Y. Xing, L. Lehman, and E. Cotts, in Pb-Free and RoHS-Compliant Materials and Processes for Microelectronics, 2007, C.A Handwerker, K. Suganuma, H.L. Reynolds, J. Bath, eds, MRS Spring Meeting.Google Scholar
  24. 24.
    T.R. Bieler, B. Zhou, L. Blair, A. Zamiri, P. Darbandi, F. Pourboghrat, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 41, 283 (2012).CrossRefGoogle Scholar
  25. 25.
    B. Arfaei, Y. Xing, J. Woods, J. Wolcott, P. Tumne, P. Borgesen, and E. Cotts, in Proceedings Electronic Components and Technology Conference, 2008.Google Scholar
  26. 26.
    B. Zhou, T.R. Bieler, T.-K. Lee, and K.-C. Liu, J. Electron. Mater. 39, 2669 (2010).CrossRefGoogle Scholar
  27. 27.
    R.D. Doherty, D.A. Hughes, F.J. Humpreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Mater. Sci. Eng. 238, 219 (1997).CrossRefGoogle Scholar
  28. 28.
    R.W. Vook, Acta Met. 12, 197 (1964).CrossRefGoogle Scholar
  29. 29.
    R. Madec, B. Devincre, and L.P. Kubin, Scr. Mater. 47, 689 (2002).CrossRefGoogle Scholar
  30. 30.
    M. Kerr, and N. Chawla, Acta Mater. 52, 4527 (2004).CrossRefGoogle Scholar
  31. 31.
    G. Cuddalorepatta, A. Dasgupta, and K. Holdermann, in Proceedings of IMECE 2008, Boston, MA, 2008.Google Scholar
  32. 32.
    A. Mayyas, L. Yin, and P. Borgesen, Proc. ASME Int., p. 319, 2009.Google Scholar
  33. 33.
    A. Qasaimeh, Ph.D. Dissertation, Binghamton University, May 2012.Google Scholar
  34. 34.
    T. Korhonen, L. Lehman, M. Korhonen, and D. Henderson, J. Electron. Mater. 36, 173 (2007).CrossRefGoogle Scholar
  35. 35.
    P. Borgesen, L. Yang, A. Qasaimeh, L. Yin, and M. Anselm, in Proceedings of SMTA PanPac Conference, 2013.Google Scholar
  36. 36.
    B. Arfaei, M. Anselm, S. Joshi, S. Mahin-Shirazi, E. Cotts, P. Borgesen, J. Wilcox, and R. Coyle, in Proceedings SMTAI, Rosemont, IL, 2013.Google Scholar
  37. 37.
    D. Schmitz, S. Shirazi, L. Wentlent, S. Hamasha, L. Yin, A. Qasaimeh, and P. Borgesen, in Proceedings of Components, Packagings Manufacturing Technology, Orlando, FL, USA, 2014.Google Scholar
  38. 38.
    F.J. Humphreys, and M. Hatherly, Recrystallization and Related Annealing Phenomena (Oxford: Pergamon Press, 1995).Google Scholar
  39. 39.
    I. Dutta, J. Electron. Mater. 32, 201 (2003).CrossRefGoogle Scholar
  40. 40.
    J. Li, T.T. Mattila, and J.K. Kivilahti, J. Electron. Mater. 39, 77 (2010).CrossRefGoogle Scholar
  41. 41.
    J. Li, H. Xu, T.T. Mattila, J.K. Kivilahti, T. Laurila, and M. Palasto-Krockel, Comput. Mater. Sci. 50, 690 (2010).CrossRefGoogle Scholar
  42. 42.
    A.D. Rollette, and D. Raabe, Comput. Mater. Sci. 21, 69 (2001).CrossRefGoogle Scholar
  43. 43.
    X. Song, and M. Rettenmayr, Mater. Sci. Eng. 332, 153 (2002).CrossRefGoogle Scholar
  44. 44.
    Q. Yu, and S.K. Esche, J. Mater. Process. Technol. 169, 493 (2005).CrossRefGoogle Scholar
  45. 45.
    F.J. Humphreys, and M.G. Ardakani, Acta Mater. 44, 2717 (1996).CrossRefGoogle Scholar
  46. 46.
    S. Shirazi, L. Yin, S. Khasawneh, L. Wentlent, and P. Borgesen, in Proceedings of Components, Packaging, and Manufacturing Technology, San Diego, CA, USA, 2015.Google Scholar
  47. 47.
    T. Alghoul, D. Watson, N. Adams, S. Khasawneh, F. Batieha, C. Greene, and P. Borgesen, in 66th Electronic Components and Technology Conference, 2016.Google Scholar
  48. 48.
    P. Borgesen, E. Cotts, and I. Dutta, in SERDP Grant, Project WP-1752, 2015.Google Scholar
  49. 49.
    H. Song, J. Morris, and F. Hua, JOM 54, 30 (2002).CrossRefGoogle Scholar
  50. 50.
    P. Kumar, Z. Huang, S. Chavali, D. Chan, I. Dutta, G. Subbarayan, and V. Gupta, IEEE Trans. Compon. Packag. Manuf. Technol. 2, 256 (2012).CrossRefGoogle Scholar
  51. 51.
    M. Motalab, Z. Cai, S. P., and P. Lall, in 13th IEEE Intersociety Conference on Thermal Thermomechanical Phenom Electronics System, San Diego, CA, USA, 2012.Google Scholar
  52. 52.
    S. Wiese, F. Feustel, and E. Meusel, Sens. Actuators A 99, 188 (2002).CrossRefGoogle Scholar
  53. 53.
    M. Amagai, M. Watanabe, M. Omiya, K. Kishimoto, and T. Shibuya, Microelectron. Reliab. 42, 951 (2002).CrossRefGoogle Scholar
  54. 54.
    M. Pei, and J. Qu, in Proc. Int. Symp. Adv. Packag. Mater.: Processes, Prop. Interfaces, Irvine, CA, USA, USA, pp. 45–49, 2005.Google Scholar
  55. 55.
    H. Ng, T. Tee, K. Goh, J. Luan, T. Reinikainen, E. Hussa, and A. Kujala, in Proceedings of Components Packaging Manufacturing Technology, Lake Buena Vista, FL, USA, 2005.Google Scholar
  56. 56.
    M.D. Mathew, H. Yang, S. Movva, and K.L. Murty, Metall. Mater. Trans. 36, 99 (2005).CrossRefGoogle Scholar
  57. 57.
    I. Dutta, C. Park, and S. Choi, Mater. Sci. Eng. 379, 401 (2004).CrossRefGoogle Scholar
  58. 58.
    A.S. Argon, Scr. Metall. 4, 1001 (1970).CrossRefGoogle Scholar
  59. 59.
    P. Borgesen, S. Hamasha, L. Wentlent, D. Watson, and C. Greene, in Proceedings of SMTA PanPac Conference, Big Island, HI, USA, 2016.Google Scholar
  60. 60.
    S. Joshi, B. Arfaei, A. Singh, M. Gharaibeh, M. Obaidat, A. Alazzam, M. Meilunas, L. Yin, M. Anselm, and P. Borgesen, in Proceedings of SMTAI, Rosemont, IL, 2012.Google Scholar
  61. 61.
    E.A. Brandes, Smithells Metals Reference Book, 7th ed. (London: Butterworth, 1992).Google Scholar
  62. 62.
    U. Sahaym, B. Talebanpour, I. Dutta, P. Kumar, and P. Borgesen, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 1868 (2013).CrossRefGoogle Scholar
  63. 63.
    S. Hamasha, A. Qasaimeh, Y. Jaradat, and P. Borgesen, IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1292 (2015).CrossRefGoogle Scholar
  64. 64.
    A. Qasaimeh, S. Hamasha, Y. Jaradat, and P. Borgesen, J. Electron. Packag. 137, 021012 (2015).CrossRefGoogle Scholar
  65. 65.
    F. Batieha, S. Hamasha, Y. Jaradat, L. Wentlent, A. Qasaimeh, and P. Borgesen, in Electronic Components and Technology Conference, 2015.Google Scholar
  66. 66.
    P. Borgesen, S. Hamasha, M. Obaidat, V. Raghavan, X. Dai, M. Meilunas, and M. Anselm, Microelectron. Reliab. 53, 1587 (2013).CrossRefGoogle Scholar
  67. 67.
    Q. Zhou, B. Zhou, T.-K. Lee, and T. Bieler, J. Electron. Mater. 45, 3013 (2016).CrossRefGoogle Scholar
  68. 68.
    B. Zhou, T. Bieler, T.-K. Lee, and W. Liu, J. Electron. Mater. 42, 319 (2013).CrossRefGoogle Scholar
  69. 69.
    B. Zhou, Q. Zhou, T. Bieler, and T.-K. Lee, J. Electron. Mater. 44, 895 (2015).CrossRefGoogle Scholar
  70. 70.
    P. Borgesen, L. Yang, B. Arfaei, L. Yin, B. Roggeman, and M. Meilunas, in SMTA Proceedings of Technology Program - Pan Pacific Microelectronics Symposium, 2011.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Peter Borgesen
    • 1
    • 2
  • Luke Wentlent
    • 2
  • Sa’d Hamasha
    • 3
  • Saif Khasawneh
    • 1
  • Sam Shirazi
    • 1
  • Debora Schmitz
    • 1
  • Thaer Alghoul
    • 1
  • Chris Greene
    • 1
  • Liang Yin
    • 4
  1. 1.Department of Systems Science and Industrial EngineeringBinghamton UniversityBinghamtonUSA
  2. 2.Materials Science ProgramBinghamton UniversityBinghamtonUSA
  3. 3.Department of Industrial and Systems EngineeringAuburn UniversityAuburnUSA
  4. 4.GE Global ResearchNiskayunaUSA

Personalised recommendations