Enhancement of the Optoelectronic Properties of PEDOT: PSS–PbS Nanoparticles Composite Thin Films Through Nanoparticles’ Capping Ligand Exchange

  • Diana F. García-Gutiérrez
  • Laura P. Hernández-Casillas
  • Selene Sepúlveda-Guzmán
  • Sofia Vazquez-Rodriguez
  • Domingo I. García-Gutiérrez
Article
  • 5 Downloads

Abstract

The influence of the capping ligand on nanoparticles’ optical and electronic properties is a topic of great interest currently being investigated by several research groups in different countries. In the present study, PbS nanoparticles originally synthesized with oleic acid, myristic acid and hexanoic acid underwent a ligand exchange process to replace the original carboxylic acid for l-cysteine as the capping layer, and were thoroughly characterized by means of transmission electron microscopy and its related techniques, such as energy dispersive x-ray spectroscopy and scanning-transmission electron microscopy, and Fourier transform infrared, Raman and x-ray photoelectron spectroscopy. Afterwards, these PbS nanoparticles were dispersed into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) matrix to fabricate a composite thin film which displayed the optical absorption properties of the PbS nanoparticles and the electrical transport properties of the PEDOT:PSS matrix, in order to evaluate the impact of the nanoparticles’ capping ligand on the optoelectronic properties of the fabricated composite thin films. Composite thin films with PbS nanoparticles showing l-cysteine as the capping layer displayed clear photoresponse and a threefold increment in their conductivities compared to pristine PEDOT:PSS. The properties of PEDOT:PSS, known as a hole transport layer in most organic photovoltaic devices, were enhanced by adding PbS nanoparticles with different capping ligands, producing a promising composite material for optoelectronic applications by proper selection of the nanoparticles’ capping layer.

Keywords

PbS nanoparticles PEDOT:PSS composite thin films conductive polymers photoresponse spin-coating 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos, Science 295, 2425 (2002).CrossRefGoogle Scholar
  2. 2.
    S. Günes and N.S. Sariciftci, Inorg. Chem. Acta 361, 581 (2008).CrossRefGoogle Scholar
  3. 3.
    J.J. Choi, W.N. Wenger, R.S. Hoffman, Y.-F. Lim, J. Luria, J. Jasieniak, J.A. Marohn, and T. Hanrath, Adv. Mater. 23, 3144 (2011).CrossRefGoogle Scholar
  4. 4.
    A.J. Moule, L. Chang, C. Thambidurai, R. Vidu, and P. Stroeve, J. Mater. Chem. 22, 2351 (2012).CrossRefGoogle Scholar
  5. 5.
    L.-Y. Chang, R. Lunt, P.R. Brown, V. Bulović, and M.G. Bawendi, Nano Lett. 13, 994 (2013).CrossRefGoogle Scholar
  6. 6.
    R. Liu, Materials 7, 2747 (2014).CrossRefGoogle Scholar
  7. 7.
    J. Yuan, A. Gallagher, Z. Liu, Y. Sun, and W. Ma, J. Mater. Chem. A 3, 2572 (2015).CrossRefGoogle Scholar
  8. 8.
    F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. Van Luppen, E. Verdonck, and L. Leenders, Synth. Met. 135, 115 (2003).CrossRefGoogle Scholar
  9. 9.
    W. Loevenich, Polym. Sci. Ser. C 56, 135 (2014).CrossRefGoogle Scholar
  10. 10.
    J.J. Choi, Y.-F. Lim, M.E.B. Santiago-Berrios, M. Oh, B.-R. Hyun, L. Sun, A.C. Bartnik, A. Goedhart, G.G. Malliaras, H.D. Abruña, F.W. Wise, and T. Hanrath, Nano Lett. 9, 3749 (2009).CrossRefGoogle Scholar
  11. 11.
    W. Ma, S.L. Swisher, T. Ewers, J. Engel, V.E. Ferry, H.A. Atwater, and A.P. Alivisatos, ACS Nano 5, 8140 (2011).CrossRefGoogle Scholar
  12. 12.
    Y. Wang and N. Herron, Phys. Lett. 200, 71 (1992).Google Scholar
  13. 13.
    S.A. McDonald, P.W. Cyr, L. Levina, and E.H. Sargent, Appl. Phys. Lett. 85, 2089 (2004).CrossRefGoogle Scholar
  14. 14.
    P. Piatkowski, W. Gadomski, P. Przybylski, and B. Ratajska-Gadomska, J. Photochem. Photobiol. A Chem. 215, 69 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Zhou, B. Wang, X. Jiang, A.A. Zakhidov, J.P. Ferraris, D. Azunskis, and L. Hanley, Int. J. Nanosci. 10, 521 (2011).CrossRefGoogle Scholar
  16. 16.
    Y. Firdaus, R. Miranti, E. Fron, A. Khetubol, E. Vandenplas, D. Cheyns, H. Borchert, J. Parisi, and M. Van der Auweraer, J. Appl. Phys. 118, 055502 (2015).CrossRefGoogle Scholar
  17. 17.
    P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi, J.C. Grossman, and V. Bulovic, ACS Nano 8, 5863 (2014).CrossRefGoogle Scholar
  18. 18.
    J. Jasieniak, M. Califano, and S.E. Watkins, ACS Nano 5, 5888 (2011).CrossRefGoogle Scholar
  19. 19.
    H. Zhao, D. Wang, M. Chaker, and D. Ma, J. Phys. Chem. C 115, 1620 (2011).CrossRefGoogle Scholar
  20. 20.
    G. Konstantatos and E.H. Sargent, Appl. Phys. Lett. 91, 173505 (2007).CrossRefGoogle Scholar
  21. 21.
    G. Konstantatos, L. Levina, A. Fischer, and E.H. Sargent, Nano Lett. 8, 1446 (2008).CrossRefGoogle Scholar
  22. 22.
    E.J.D. Klem, H. Shukla, S. Hinds, D.D. MacNeil, L. Levina, and E.H. Sargent, Appl. Phys. Lett. 92, 212105 (2008).CrossRefGoogle Scholar
  23. 23.
    D.F. Garcia-Gutierrez, D. Gonzalez-Ovalle, L.P. Hernandez-Casillas, F. Fungo, and D.I. Garcia-Gutierrez, Ingenierias 17, 6 (2014).Google Scholar
  24. 24.
    M.V. Kovalenko, M.I. Bodnarchuk, J. Zaumseil, J.-S. Lee, and D.V. Talapin, J. Am. Chem. Soc. 132, 10085 (2010).CrossRefGoogle Scholar
  25. 25.
    J.M. Luther, M. Law, Q. Song, C.L. Perkins, M.C. Beard, and A.J. Nozik, ACS Nano 2, 271 (2008).CrossRefGoogle Scholar
  26. 26.
    S. Zhang, P.W. Cyr, S.A. McDonald, G. Konstantatos, and E.H. Sargent, Appl. Phys. Lett. 87, 233101 (2005).CrossRefGoogle Scholar
  27. 27.
    D. Deng, J. Xia, J. Cao, J. Qu, J. Tian, Z. Qian, Y. Gu, and Z. Gu, J. Colloid Interface Sci. 367, 234 (2012).CrossRefGoogle Scholar
  28. 28.
    D.I. Garcia-Gutierrez, D.F. Garcia-Gutierrez, L.M. De Leon-Covian, M.T. Treviño-Gonzalez, M.A. Garza-Navarro, I.E. Moreno-Cortez, and R.F. Cienfuegos-Pelaes, J. Phys. Chem. C 118, 22291 (2014).CrossRefGoogle Scholar
  29. 29.
    J.L. Blackburn, H. Chappell, J.M. Luther, A.J. Nozik, and J.C. Johnson, J. Phys. Chem. Lett. 2, 599 (2011).CrossRefGoogle Scholar
  30. 30.
    D. Bozyigit, N. Yazdani, M. Yarema, O. Yarema, W. Matteo, M. Lin, S. Volk, K. Vuttivorakulchai, M. Luisier, F. Juranyi, and V. Wood, Nature 531, 618 (2016).CrossRefGoogle Scholar
  31. 31.
    K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prudhomme, I.A. Aksay, and R. Car, Nano Lett. 8, 36 (2008).CrossRefGoogle Scholar
  32. 32.
    A. Watt, T. Eichmann, H. Rubinsztein-Dunlop, and P. Meredith, Appl. Phys. Lett. 87, 253109 (2005).CrossRefGoogle Scholar
  33. 33.
    I.E. Moreno-Cortez, A. Alvarado-Castañeda, D.F. Garcia-Gutierrez, N.A. Garcia-Gomez, S. Sepulveda-Guzman, and D.I. Garcia-Gutierrez, Synth. Met. 220, 255 (2016).CrossRefGoogle Scholar
  34. 34.
    U. Lang, E. Müller, and N. Naujoks, J. Dual Adv. Funct. Mater. 19, 1215 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.UANL, Facultad de Ingeniería Mecánica Y Eléctrica, FIMEUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.UANL, Centro de Innovación, Investigación Y Desarrollo en Ingeniería y Tecnología CIIDITUniversidad Autónoma de Nuevo LeónApodacaMexico

Personalised recommendations