Advertisement

Journal of Electronic Materials

, Volume 47, Issue 5, pp 2731–2738 | Cite as

Effect of Electrodeposition Potential on Surface Free Energy and Supercapacitance of MnO2 Thin Films

  • B. P. Relekar
  • S. A. Mahadik
  • S. T. Jadhav
  • A. S. Patil
  • R. R. Koli
  • G. M. Lohar
  • V. J. Fulari
Article
  • 153 Downloads

Abstract

The effect of anodic deposition potential on the supercapacitance of manganese dioxide (MnO2) and effect of surface free energy (SFE) on the supercapacitance are discussed. MnO2 thin films have been synthesized using a potentiostatic electrodeposition method. Their structure, morphology, wettability, electrochemical properties and supercapacitance are discussed. The observed specific capacitance (Cs) of MnO2 thin films is 127 F/g for the deposition potential at 1.20 V/Ag/AgCl. These films also show better stability for over 1000 cycles. The porous MnO2 thin films lead to high SFE and a corresponding high value of specific capacitance.

Keywords

Electrodeposition supercapacitance surface free energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008).CrossRefGoogle Scholar
  2. 2.
    B.P. Relekar, G.M. Lohar, P.S. Indapure, S.T. Punde, S.T. Jadhav, H.D. Dhygude, and V.J. Fulari, Mater. Focus 5, 577 (2016).CrossRefGoogle Scholar
  3. 3.
    Z. Fan, J. Yan, T. Wei, L. Zhi, and F. Wei, Adv. Funct. Mater. 21, 2366 (2011).CrossRefGoogle Scholar
  4. 4.
    A.S. Patil, M.D. Patil, G.M. Lohar, S.T. Jadhav, and V.J. Fulari, Ionics 23, 1259 (2017).CrossRefGoogle Scholar
  5. 5.
    H. Wang and H.S. Casalongue, J. Am. Chem. Soc. 132, 7472 (2010).CrossRefGoogle Scholar
  6. 6.
    B.P. Relekar, G.M. Lohar, and V.J. Fulari, Int. J. Sci. Eng. Res. 6, 87 (2015).Google Scholar
  7. 7.
    B.P. Relekar, G.M. Lohar, R.K. Kamble, A.B. Bansode, H.D. Dhygude, and V.J. Fulari, Mater. Focus 5, 258 (2016).CrossRefGoogle Scholar
  8. 8.
    X. Wu, L. Jiang, C. Long, T. Wei, and Z. Fan, Adv. Funct. Mater. 25, 1648 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Duay, S.A. Sherrill, Z. Gui, E. Gillette, and S.B. Lee, ACS Nano 7, 1200 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Yan, Z. Fan, T. Wei, M. Zhang, and F. Wei, Carbon 48, 3825 (2010).CrossRefGoogle Scholar
  11. 11.
    J. Yan, Z. Fan, L. Zhi, and F. Wei, Adv. Funct. Mater. 22, 2632 (2012).CrossRefGoogle Scholar
  12. 12.
    L. Wang, Z. Dong, Z. Zhang, and J. Jin, Adv. Funct. Mater. 23, 2758 (2013).CrossRefGoogle Scholar
  13. 13.
    H. Chen, L. Hu, R. Che, M. Chen, and L. Wu Adv. Energy Mater 3, 1636 (2013).CrossRefGoogle Scholar
  14. 14.
    F.Y. Cheng, H. Ma, J. Chen, and P. Shen, Inorg. Chem. 45, 2038 (2006).CrossRefGoogle Scholar
  15. 15.
    Y.S. Ding, M. ShenAindow, and S.L. Suib, Adv. Funct. Mater. 16, 549 (2006).CrossRefGoogle Scholar
  16. 16.
    J.B. Fei, Y. Cui, X. Yan, and J.B. Li, Adv. Mater. 20, 452 (2008).CrossRefGoogle Scholar
  17. 17.
    H. Hasan, Manganese, 1st ed. (New York: Rosen Central, 2008), p. 48.Google Scholar
  18. 18.
    S. Meher and G. Rao, J. Phys. Chem. C 115, 15646 (2011).CrossRefGoogle Scholar
  19. 19.
    J. Emsley, Nature’s Building Blocks: An A8Z Guide to the Elements (Oxford: Oxford University Press, 2001), p. 538.Google Scholar
  20. 20.
    Y. Chabre and J. Pannetier, Prog. Solid State Chem. 23, 1130 (1995).CrossRefGoogle Scholar
  21. 21.
    H.L. Wang and L.F. Cui, J. Am. Chem. Soc. 132, 13978 (2010).CrossRefGoogle Scholar
  22. 22.
    A.L.M. Reddy, S.R. Shaijumon, and P.M. Ajayan, Nano Lett. 9, 1002 (2009).CrossRefGoogle Scholar
  23. 23.
    B. Ammundsen and J. Paulsen, Adv. Mater. 13, 943 (2001).CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, Q. Xiao, G. Lei, and Z. Li, Phys. Chem. Chem. Phys. 17, 18699 (2015).CrossRefGoogle Scholar
  25. 25.
    M. Toupin, T. Brousse, and D. Belanger, Chem. Mater. 14, 3946 (2002).CrossRefGoogle Scholar
  26. 26.
    H. Wei, J. Wang, S. Yang, W. Wang, D. Hou, and T. Li, J. Electron. Mater. 46, 1539 (2017).CrossRefGoogle Scholar
  27. 27.
    W.B. Yan, T. Ayvazian, J. Kim, and Y. Liu, ACS Nano 5, 8275 (2011).CrossRefGoogle Scholar
  28. 28.
    B.E. Conway, V. Birss, and J. Wojtowicz, J. Power Sources 66, 1 (1997).CrossRefGoogle Scholar
  29. 29.
    Z.Q. Li, Y. Ding, Y.Q. Yang, and Y. Xie, Chem. Commun. 8, 918 (2005).CrossRefGoogle Scholar
  30. 30.
    P. Yu, X. Zhang, and Y.W. Ma, Cryst. Growth Des. 9, 528–533 (2009).CrossRefGoogle Scholar
  31. 31.
    J. Jiang, Y.Y. Li, C.Z. Yuan, and X.W. Lou, Adv. Mater. 24, 51665180 (2012).Google Scholar
  32. 32.
    A. Manivel, N. Ilayaraja, and M. Noel, Electrochim. Acta 52, 7841 (2007).CrossRefGoogle Scholar
  33. 33.
    S.H. Park, H.M. Park, and J.Y. Song, RSC Adv. 6, 3210 (2016).CrossRefGoogle Scholar
  34. 34.
    D.L. Fang, B.C. Wu, and A.Q.C.H. Zheng, J. Alloys Compd. 507, 526 (2010).CrossRefGoogle Scholar
  35. 35.
    Z.H. Ai, L.Z. Zhang, and J.R. Qiu, Mater. Chem. Phys. 118, 162 (2008).CrossRefGoogle Scholar
  36. 36.
    M.V. Ananth and K. Dakshinamurthi, J. Power Sources 75, 278 (1998).CrossRefGoogle Scholar
  37. 37.
    H.K. Jeong, Y.P. Lee, and Y.H. Lee, J. Am. Chem. Soc. 130, 1362 (2008).CrossRefGoogle Scholar
  38. 38.
    T. Gao and M. Glerup, J. Phys. Chem. C 112, 13134 (2008).CrossRefGoogle Scholar
  39. 39.
    A. Sumboja, C.Y. Foo, and P.S. Lee, Adv. Mater. 25, 2809 (2013).CrossRefGoogle Scholar
  40. 40.
    S. Alwarappan, A. Erdem, C. Liu, and C. Li, J. Phys. Chem. C 113, 8853 (2009).CrossRefGoogle Scholar
  41. 41.
    W. Wei, X. Cui, W. Chen, and D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011).CrossRefGoogle Scholar
  42. 42.
    L.J. Sun, L. Chen, and W.M. Gu, Electrochim. Acta 53, 3036 (2008).CrossRefGoogle Scholar
  43. 43.
    A.S. Patil, G.M. Lohar, and V.J. Fulari, J. Mater. Sci. Mater. Electron. 27, 9550 (2016).CrossRefGoogle Scholar
  44. 44.
    G.M. Lohar, S.T. Jadhav, H.D. Dhaygude, M.V. Takale, R.A. Patil, Y.R. Ma, M.C. Rath, and V.J. Fulari, J. Alloys Compd. 653, 22 (2015).CrossRefGoogle Scholar
  45. 45.
    G.M. Lohar, H.D. Dhaygude, B.P. Relekar, M.C. Rath, and V.J. Fulari, Ionics 22, 1451 (2016).CrossRefGoogle Scholar
  46. 46.
    G.M. Lohar, R.K. Kamble, S.T. Punde, S.T. Jadhav, A.S. Patil, H.D. Dhaygude, B.P. Relekar, and V.J. Fulari, Mater. Focus 5, 481 (2016).CrossRefGoogle Scholar
  47. 47.
    R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).CrossRefGoogle Scholar
  48. 48.
    R.R. Maphanga, S.C. Parker, and P.E. Ngoepe, Surf. Sci. 603, 3184 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • B. P. Relekar
    • 1
    • 2
  • S. A. Mahadik
    • 4
  • S. T. Jadhav
    • 1
  • A. S. Patil
    • 1
  • R. R. Koli
    • 1
  • G. M. Lohar
    • 3
  • V. J. Fulari
    • 1
  1. 1.Holography and Materials Research Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Yashwantrao Chavan College of Science, KaradKaradIndia
  3. 3.Lal Bahadur Shastri College of Arts Science and CommerceSataraIndia
  4. 4.Department of Materials Science and EngineeringUniversity of SeoulSeoulSouth Korea

Personalised recommendations