Advertisement

Journal of Electronic Materials

, Volume 47, Issue 8, pp 4404–4411 | Cite as

Enhanced Structural and Luminescent Properties of Carbon-Assisted ZnO Nanorod Arrays on (100) Si Substrate

  • Im Taek Yoon
  • Hak Dong Cho
  • Sejoon Lee
  • Dmitry V. Roshchupkin
Topical Collection: 18th International Conference on II–VI Compounds
  • 31 Downloads
Part of the following topical collections:
  1. 18th International Conference on II–VI Compounds and Related Materials

Abstract

We have fabricated as-grown ZnO nanorods (NRs) and carbon-assisted NR arrays on semi-insulating (100)-oriented Si substrates. We compared the structural and luminescent properties of them. High-resolution transmission microscopy, field emission scanning electron microscopy, x-ray diffraction and energy-dispersive x-ray revealed that the as-grown ZnO NRs and carbon-assisted ZnO NRs were single crystals with a hexagonal wurtzite structure, and grew with a c-axis orientation perpendicular to the Si substrate. These measurements show that the carbon-assisted ZnO NRs were better synthesized vertically on an Si substrate compared to the as-grown ZnO NRs. Photoluminescence measurements showed that luminescence intensity of the carbon-assisted ZnO NRs was enhanced compared to the as-grown ZnO NRs. The enhanced luminescence intensity of the carbon-assisted ZnO demonstrates the possible improvement in the performance of photovoltaic nanodevices based on ZnO-like materials. This method can be applied to the fabrication of well-aligned ZnO NRs used widely in optoelectronic devices.

Keywords

ZnO nanorods single crystal chemical vapor deposition luminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Fang, J. Li, D. Zhao, D. Shen, B. Li, and X. Wang, J. Mater. Chem. C 113, 21208 (2009).Google Scholar
  2. 2.
    R. Nandi, R.S. Srinivasa, and S.S. Major, Mater. Chem. Phys. 182, 155 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Lu, Z. Shi, Y. Wang, Y. Lin, Q. Zhu, Z. Tian, J. Dai, S. Wang, and C. Xu, Sci. Rep. 6, Article number: 25645 (2016).Google Scholar
  4. 4.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, and P.D. Yang, Science 292, 1897 (2001).CrossRefGoogle Scholar
  5. 5.
    S.W. Eaton, A. Fu, A.B. Wong, C.Z. Ning, and P.D. Yang, Nat. Rev. Mater. 1, 16028 (2016).CrossRefGoogle Scholar
  6. 6.
    H. Fujiwara, T. Suzuki, R. Niyuki, and K. Sasaki, New J. Phys. 18, 103046 (2016).CrossRefGoogle Scholar
  7. 7.
    J.C. Johnson, H.Q. Yan, P.D. Yang, and R.J. Saykally, J. Mater. Chem. B 107, 8816 (2003).Google Scholar
  8. 8.
    H. Kind, H. Yan, B. Messer, M. Law, and P.D. Yang, Adv. Mater. 14, 158 (2002).CrossRefGoogle Scholar
  9. 9.
    Z. Jun, G. Yudong, H. Youfan, M. Wenjie, H.Y. Ping, B. Gang, K.S. Ashok, L.P. Dennis, and L.W. Zhong, Appl. Phys. Lett. 94, 101103 (2009).CrossRefGoogle Scholar
  10. 10.
    J. Saghaeia, A. Fallahzadeha, and T. Saghaei, Sens. Actuators, A 247, 150 (2016).CrossRefGoogle Scholar
  11. 11.
    F.H. Alsultany, Z. Hassan, and N.M. Ahmed, Opt. Mater. 60, 30 (2016).CrossRefGoogle Scholar
  12. 12.
    T.N. Hou, J. Han, T. Yamada, P. Nguyen, Y.P. Chen, and M. Meyyappan, Nano Lett. 4, 1247 (2004).CrossRefGoogle Scholar
  13. 13.
    G.H. Shen, A.R. Tandio, and F.C.N. Hong, Thin Solid Films 618, 100 (2016).CrossRefGoogle Scholar
  14. 14.
    M.P. Lu, C.W. Chen, and M.Y. Lu, Phys. Rev. Appl. 6, 054018 (2016).CrossRefGoogle Scholar
  15. 15.
    Z.L. Wang and J. Song, Science 312, 242 (2006).CrossRefGoogle Scholar
  16. 16.
    G. Zhu, R. Yang, S. Wang, and Z.L. Wang, Nano Lett. 10, 3151 (2010).CrossRefGoogle Scholar
  17. 17.
    S.H. Baek and I.K. Park, Nanotechnology 28, 095401 (2017).CrossRefGoogle Scholar
  18. 18.
    E.S. Nour, O. Nur, and M. Willander, Semicond. Sci. Technol. 32, 064005 (2017).CrossRefGoogle Scholar
  19. 19.
    A. Wei, X.W. Sun, J.X. Wang, Y. Lei, X.P. Cai, C.M. Li, Z.L. Dong, and W. Huang, Appl. Phys. Lett. 89, 123902 (2006).CrossRefGoogle Scholar
  20. 20.
    C.M. Fung, J.S. Lloyd, S. Samavat, D. Deganello, and K.S. Teng, Sens. Actuators, B 247, 807 (2017).CrossRefGoogle Scholar
  21. 21.
    R. Ahmad, M.S. Ahn, and Y.B. Hahn, Electrochem. Commun. 77, 107 (2017).CrossRefGoogle Scholar
  22. 22.
    R. Ahmad, M.S. Ahn, and Y.B. Hahn, J. Colloid Interface Sci. 498, 292 (2017).CrossRefGoogle Scholar
  23. 23.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).CrossRefGoogle Scholar
  24. 24.
    Y.Z. Jin, J.P. Wang, B.Q. Sun, J.C. Blakesley, and N.C. Greenham, Nano Lett. 8, 1649 (2008).CrossRefGoogle Scholar
  25. 25.
    C.H. Lin, R.S. Chen, Y.K. Lin, S.B. Wang, L.C. Chen, K.H. Chen, M.C. Wen, M.M.C. Chou, and L. Chang, Appl. Phys. Lett. 110, 052101 (2017).CrossRefGoogle Scholar
  26. 26.
    C. Cheng, T.L. Wong, W. Li, C. Zhu, S. Xu, L. Wang, K.K. Fung, and N. Wang, AIP Adv. 1, 032104 (2011).CrossRefGoogle Scholar
  27. 27.
    Y.H. Yang, C.X. Wang, B. Wang, Z.Y. Li, J. Chen, D.H. Chen, N.S. Xu, G.W. Yang, and J.B. Xu, Appl. Phys. Lett. 87, 183109 (2005).CrossRefGoogle Scholar
  28. 28.
    X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, and Y. Li, Nano Lett. 9, 2331 (2009).CrossRefGoogle Scholar
  29. 29.
    K.K. Naik, R. Khare, D. Chakravarty, M.A. More, R. Thapa, D.J. Late, and C.S. Rou, Appl. Phys. Lett. 105, 233101 (2014).CrossRefGoogle Scholar
  30. 30.
    F.J. Sheini, K.R. Patil, D.S. Joag, and M.A. More, Appl. Surf. Sci. 257, 8366 (2011).CrossRefGoogle Scholar
  31. 31.
    F.J. Sheini, D.S. Joag, and M.A. More, Thin Solid Films 519, 184 (2010).CrossRefGoogle Scholar
  32. 32.
    H.D. Cho, H.Y. Cho, D.W. Kwak, T.W. Kang, and I.T. Yoon, J. Cryst. Growth 437, 26 (2016).CrossRefGoogle Scholar
  33. 33.
    J. Zhong, K. Cheng, B. Hu, H. Gong, S. Zhou, and Z. Du, Mater. Chem. Phys. 115, 799 (2009).CrossRefGoogle Scholar
  34. 34.
    C. Jaqadish and S.J. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications. (Oxford: Elsevier, 2006).Google Scholar
  35. 35.
    W. Wang, Q. Feng, K. Jiang, J. Huang, X. Zhang, W. Song, and R. Tan, Appl. Surf. Sci. 257, 3884 (2011).CrossRefGoogle Scholar
  36. 36.
    M.N. Islam, T.B. Ghosh, K.L. Chopra, and H.N. Acharya, Thin Solid Films 280, 20 (1996).CrossRefGoogle Scholar
  37. 37.
    N.S. Ramgir, D.J. Late, A.B. Bhise, M.A. MoreA, I.S. Mulla, D.S. Joag, and K. Vijayamohanan, J. Phys. Chem. B 110, 18236 (2006).CrossRefGoogle Scholar
  38. 38.
    N. Tabet, M. Faiz, and A.L. Oteibi, Int. J. Nanoscience 6, 23 (2007).CrossRefGoogle Scholar
  39. 39.
    O. Akhavan, M. Mehrabian, K. Mirabbaszadeh, and R. Azimirad, J. Phys. D Appl. Phys. 42, 225305 (2009).CrossRefGoogle Scholar
  40. 40.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
  41. 41.
    X. Gu, K. Huo, G. Qian, J. Fu, and P.K. Chu, Appl. Phys. Lett. 93, 203117 (2008).CrossRefGoogle Scholar
  42. 42.
    X. Gu, Y. Zhao, and Y. Qiang, Vaccum 94, 74 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Quantum Functional Semiconductor Research CenterDongguk UniversitySeoulRepublic of Korea
  2. 2.Department of Physics and Semiconductor ScienceDongguk UniversitySeoulRepublic of Korea
  3. 3.Institute of Microelectronics Technology and High-Purity MaterialsRussian Academy of SciencesChernogolovkaRussian Federation

Personalised recommendations