Dielectric and Energy Storage Properties of Ba0.65Sr0.35TiO3 Ceramics Modified by BiNbO4

  • Yi Zheng
  • Jihua Zhang
  • Meng Wei
  • Xiangxiang Dong
  • Jiapeng Huang
  • Kaituo Wu
  • Hongwei Chen
Article
  • 2 Downloads

Abstract

(1 − x) (Ba0.65Sr0.35TiO3)–xBiNbO4 (x = 0.0–0.15) ceramic were prepared by solid-state reaction method. The phase composition, microstructure, dielectric properties, polarization–electric field, breakdown strength and energy storage behaviors for the BiNbO4-modified Ba0.65Sr0.35TiO3 ceramics were investigated. With the addition of BiNbO4, the remnant polarization and saturation polarization decreased and the nonlinearity was suppressed. When x = 0.07, the maximum recoverable energy storage achieved was 0.5 J/cm3, 1.5 times that of un-doped Ba0.65Sr0.35TiO3 ceramics, with an efficiency of 96.89% and a breakdown electric field reaching 15.3 kV/mm. Therefore, BiNbO4 doping could improve the energy storage properties of Ba0.65Sr0.35TiO3 for high-energy pulse capacitor application.

Keywords

Ba0.65Sr0.35TiO3 BiNbO4 energy storage capacitor breakdown strength 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Innovation Foundation of Collaboration Center of Electronic Materials and Devices (No. ICEM2015-4002).

References

  1. 1.
    C. Liu, F. Li, L. Ma, and H. Cheng, Adv. Mater. 22, 28 (2010).CrossRefGoogle Scholar
  2. 2.
    T. Wu, Y. Pu, P. Gao, and D. Liu, J. Mater. Sci. Mater. Electron. 24, 4105 (2013).CrossRefGoogle Scholar
  3. 3.
    X. Hao, J. Zhai, L. Kong, and Z. Xu, Prog. Mater Sci. 63, 1 (2014).CrossRefGoogle Scholar
  4. 4.
    X. Liu, D. Wu, Z. Chen, B. Fang, J. Ding, X. Zhao, and H. Luo, Adv. Appl. Ceram. 114, 436 (2015).CrossRefGoogle Scholar
  5. 5.
    Y. Huang, Y. Wu, W. Qiu, J. Li, and X. Chen, J. Eur. Ceram. Soc. 35, 1469 (2015).CrossRefGoogle Scholar
  6. 6.
    E.P. Gorzkowski, M.J. Pan, B. Bender, and C.C.M. Wu, J. Electroceram. 18, 269 (2007).CrossRefGoogle Scholar
  7. 7.
    H. Ogihara, C.A. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 1719 (2009).CrossRefGoogle Scholar
  8. 8.
    L. Wu, X. Wang, and L. Li, J. Alloys Compd. 688, 113 (2016).CrossRefGoogle Scholar
  9. 9.
    M. Liu, H. Hao, W. Chen, D. Zhou, M. Appiah, B. Liu, M. Cao, Z. Yao, H. Liu, and Z. Zhang, Ceram. Int. 42, 379 (2016).CrossRefGoogle Scholar
  10. 10.
    M. Wei, J. Zhang, M. Zhang, Z. Yao, H. Zhang, and C.Yang Chen, Ceram. Int. 43, 4768 (2017).CrossRefGoogle Scholar
  11. 11.
    M. Wei, J. Zhang, K. Wu, H. Chen, and C. Yang, Ceram. Int. 43, 9593 (2017).CrossRefGoogle Scholar
  12. 12.
    T. Strathdee, L. Luisman, A. Feteira, K. Reichmann, and F. Morrison, J. Am. Ceram. Soc. 94, 2292 (2011).CrossRefGoogle Scholar
  13. 13.
    B. Xiong, H. Hao, S. Zhang, H. Liu, and M. Cao, J. Am. Ceram. Soc. 94, 3412 (2011).CrossRefGoogle Scholar
  14. 14.
    N. Kumar, E.A. Patterson, T. Frömling, D.P. Cann, and J.C. Nino, J. Am. Ceram. Soc. 99, 3047 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Chen, X. Chen, F. He, Y. Wang, H. Zhou, and L. Fang, J. Electron. Mater. 43, 1112 (2014).CrossRefGoogle Scholar
  16. 16.
    H. Wang, B. Wang, Q. Li, Z. Zhu, R. Wang, and C.H. Woo, Phys. Rev. B 75, 245209 (2007).CrossRefGoogle Scholar
  17. 17.
    W. Chen, X. Yao, and X. Wei, J. Mater. Sci. 43, 1144 (2007).CrossRefGoogle Scholar
  18. 18.
    L. Wu, X. Wang, and L. Li, RSC Adv. 6, 14273 (2016).CrossRefGoogle Scholar
  19. 19.
    Y. Yuan, M. Du, S. Zhang, and Z. Pei, J. Mater. Sci. Mater. Electron. 20, 157 (2008).CrossRefGoogle Scholar
  20. 20.
    M. Wei, J. Zhang, K. Wu, H. Chen, and C. Yang, Int. J. Appl. Ceram. Technol. (2017).  https://doi.org/10.1111/ijac.12775.
  21. 21.
    S. Devesa, M.P. Graça, and L.C. Costa, Mater. Res. Bull. 78, 128 (2016).CrossRefGoogle Scholar
  22. 22.
    C.A. Randall, A.S. Bhalla, T.R. Shrout, and L.E. Cross, J. Mater. Res. 5, 829 (1990).CrossRefGoogle Scholar
  23. 23.
    Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, and Z. Yu, J. Eur. Ceram. Soc. 34, 1209 (2014).CrossRefGoogle Scholar
  24. 24.
    T. Chen, M. Fu, B. Jia, Y. Wu, X. Liu, and X. Chen, Adv. Appl. Ceram. 112, 270 (2013).CrossRefGoogle Scholar
  25. 25.
    J. Zhu, Y. Zhang, X. Song, Q. Zhang, D. Yang, and Y. Chen, Phys. Status Solidi A 212, 2822 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated Devices, Collaboration Innovation Center of Electric Materials and DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations