Skip to main content

The Potential of a Cascaded TEG System for Waste Heat Usage in Railway Vehicles

Abstract

This work focuses on the conceptual design and optimization of a near series prototype of a high-power thermoelectric generator system (TEG system) for diesel-electric locomotives. The replacement of the silencer in the exhaust line enables integration with already existing vehicles. However, compliance with the technical and legal frameworks and the assembly space requirements is just as important as the limited exhaust back pressure, the high power density and the low life cycle costs. A special emphasis is given to the comparison of cascaded two-stage Bi2Te3 and Mg2Si0.4Sn0.6/MnSi1.81 modules with single-stage Bi2Te3 modules, both manufactured in lead-frame technology. In addition to the numerous, partly competing boundary conditions for the use in rail vehicles, the additional degree of freedom from the cascaded thermoelectric modules (TEM) is considered. The problem is investigated by coupling one-dimensional multi-domain simulations with an optimization framework using a genetic algorithm. The achievable electrical power of the single-stage system is significantly higher, at 3.2 kW, than the performance of the two-stage system (2.5 kW). Although the efficiency of the two-stage system is 44.2% higher than the single-stage system, the overall power output is 22.8% lower. This is because the lower power density and the lower number of TEM more than compensates the better efficiency. Hence, the available installation space, and thus the power density, is a critical constraint for the design of TEG systems. Furthermore, for applications recovering exhaust gas enthalpy, the large temperature drop across the heat exchanger is characteristic and must be considered carefully within the design process.

This is a preview of subscription content, access via your institution.

References

  1. SCI Verkehr GmbH, Weltmarkt für Bahnelektrifizierung wächst weiter mit Dynamik, insbesondere in Afrika, Nahen Osten sowie Westeuropa - Wachstumsmotor ist der Stadtverkehr sowie die Elektrifizierung von Dieselstrecken. (SCI Verkehr GmbH, 2014). https://www.sci.de/fileadmin/user_ upload/presse/pdf_downloads/Pressemitteilung_Railway_ Eletrification_01.pdf. Accessed 26 June 2017

  2. J. Janicki, H. Reinhard, and M. Rüffer, Schienenfahrzeugtechnik (Berlin: Bahn-Fachverlag, 2013), p. 195.

    Google Scholar 

  3. J. Ihme, Schienenfahrzeugtechnik (Wiesbaden: Springer Vieweg, 2016), pp. 86–87.

    Book  Google Scholar 

  4. R. Basshuysen and F. Schäfer, Handbuch Verbrennungsmotor (Berlin: Springer, 2015), p. 20.

    Google Scholar 

  5. F. Kreith and D.Y. Goswani, Handbook of Energy Efficiency and Renewable Energy (Boca Raton: Taylor & Francis, 2007).

    Book  Google Scholar 

  6. H.G. Zhang, E.H. Wang, and B.Y. Fan, Appl. Energy 102, 1504 (2013).

    Article  Google Scholar 

  7. R. Schimke, G. Zimmermann, and M. Beitelschmidt, Energy Efficient Vehicles Technology, ed. B. Bäker and L. Morawietz (Renningen: Expert, 2011), pp. 57–67.

    Google Scholar 

  8. European Commission Directive 2012/46/EU, Off. J. L 353/80 (2012)

  9. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  10. X. Gou, H. Xiao, and S. Yang, Appl. Energy 87, 3131 (2010).

    Article  Google Scholar 

  11. R. Kühn, O. Koeppen, and J. Kitte, J. Electron. Mater. 43, 1521 (2014).

    Article  Google Scholar 

  12. B. Xiong, L. Chen, F. Meng, and F. Sun, Energy 77, 562 (2014).

    Article  Google Scholar 

  13. A. Heghmanns, M. Beitelschmidt, S. Wilbrecht, K. Geradts, and G. Span, Mater. Today Proc. 2, 780 (2015).

    Article  Google Scholar 

  14. A. Heghmanns, S. Wilbrecht, M. Beitelschmidt, and K. Geradts, J. Electron. Mater. 45, 1633 (2016).

    Article  Google Scholar 

  15. S. Kumar, S.D. Heister, X. Xu, J.R. Salvador, and G.P. Meisner, J. Electron. Mater. 42, 665 (2013).

    Article  Google Scholar 

  16. X. Liang, X. Sun, H. Tian, G. Shu, Y. Wang, and X. Wang, Appl. Energy 130, 190 (2014).

    Article  Google Scholar 

  17. C. Goupil, W. Seifert, K. Zabrocki, E. Müller, and G.J. Snyder, Entropy 13, 1481 (2011).

    Article  Google Scholar 

  18. D.M. Rowe, Thermoelectrics Handbook, ed. D.M. Rowe (Boca Raton: Taylor & Francis, 2006), pp. 1-1–1-14.

    Google Scholar 

  19. G.J. Snyder, Thermoelectrics Handbook, ed. D.M. Rowe (Boca Raton: Taylor & Francis, 2006), pp. 9-1–9-26.

    Google Scholar 

  20. T.S. Ursell, and G.J. Snyder, in Proceedings of the 21st International Conference on Thermoelectrics (2002), pp. 412–417

  21. J. Schilz, L. Helmers, W.E. Müller, and M. Niino, J. Appl. Phys. 83, 1150 (1998).

    Article  Google Scholar 

  22. G.J. Snyder, Appl. Phys. Lett. 84, 2436 (2004).

    Article  Google Scholar 

  23. L. Cai, P. Li, Q. Luo, P. Zhai, and Q. Zhang, J. Electron. Mater. 46, 1552 (2017).

    Article  Google Scholar 

  24. L. Zhang, T. Tosho, N. Okinaka, and T. Akiyama, Mater. Trans. 49, 1675 (2008).

    Article  Google Scholar 

  25. T. Ming, Y. Wu, C. Peng, and Y. Tao, Energy 80, 388 (2015).

    Article  Google Scholar 

  26. D.T. Crane, D. Kossakovski, and L.E. Bell, J. Electron. Mater. 38, 1382 (2009).

    Article  Google Scholar 

  27. K.W. Lindler, Energy Conversat. Manag. 39, 1009 (1998).

    Article  Google Scholar 

  28. J. Yu, H. Zhao, and K. Xie, Cryogenics 47, 89 (2007).

    Article  Google Scholar 

  29. H.T. Kaibe, L. Rauscher, S. Fujimoto, T. Kurosawa, T. Kanda, M. Mukoujima, I. Aoyama, H. Ishimabushi, K. Ishida, and S. Sano, in Proceedings of the 23rd International Conference on Thermoelectrics (2004)

  30. L. Chen, J. Li, F. Sun, and C. Wu, Appl. Energy 82, 300 (2005).

    Article  Google Scholar 

  31. R. Arora, S.C. Kaushik, and R. Arora, Energy 91, 242 (2015).

    Article  Google Scholar 

  32. T. Kajikawa, T. Onishi, in Proceedings of the 26th International Conference on Thermoelectrics (2007), pp. 322–330

  33. E. Müller, Č. Drašar, J. Schilz, and W.A. Kaysser, Mater. Sci. Eng. 362, 17 (2003).

    Article  Google Scholar 

  34. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Mater. Sci. 37, 2893 (2002).

    Article  Google Scholar 

  35. Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. B 391, 256 (2007).

    Article  Google Scholar 

  36. A. Heghmanns and M. Beitelschmidt, Appl. Energy 155, 447 (2015).

    Article  Google Scholar 

  37. X. Sun, X. Liang, G. Shu, H. Tian, H. Wei, and X. Wang, Energy 77, 489 (2014).

    Article  Google Scholar 

  38. H. Tian, X. Sun, Q. Jia, X. Liang, G. Shu, and X. Wang, Energy 84, 121 (2015).

    Article  Google Scholar 

  39. C. Liu, X. Pan, X. Zheng, Y. Yan, and W. Li, J. Energy Inst. 89, 271 (2016).

    Article  Google Scholar 

  40. S. Wilbrecht, G. Barthelmes, G. Span, M. Beitelschmidt, and A. Mazzone, in Proceedings of the 11th World Congress on Railway Research (2016)

  41. G. Span, A. Siegloch, J. Haferkamp, and N. Iosad, Patent No. WO 2013/124094 A3 (2013)

  42. W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).

    Article  Google Scholar 

  43. G. Bernard-Granger, M. Soulier, H. Ihou-Mouko, C. Navone, M. Boidot, J. Leforestier, and J. Simon, J. Alloys Compd. 618, 403 (2015).

    Article  Google Scholar 

  44. J.L. Gao, Q.G. Du, X.D. Zhang, and X.Q. Jiang, J. Electron. Mater. 40, 884 (2011).

    Article  Google Scholar 

  45. T. Weißgärber, V. Pacheco, C. Recknagel, G. Pöhle, H.-P. Martin, J. Schilm, A. Pönicke, B. Feng, B. Kieback, and A. Michaelis, Pulvermetallurgie in Wissenschaft, Praxis, vol. 31 (Dortmund: Heimdall Verlag, 2015), p. 259.

    Google Scholar 

  46. V. Pacheco, C. Recknagel, H. Görlitz, T. Weißgärber, and B. Kieback, in Proceedings of the 3rd IAV-Tagung Thermoelektrik, ed. by D. Jänsch (Expert, Berlin 2012)

  47. R. Kühn, O. Koeppen, P. Schulze, and D. Jänsch, Mater. Today Proc. 2, 761 (2015).

    Article  Google Scholar 

  48. U. Kirsch, Structural Optimization (Berlin: Springer, 1993).

    Book  Google Scholar 

  49. F.M. White, Viscous Fluid Flow, vol. 2 (New York: McGraw-Hill Inc, 1991).

    Google Scholar 

  50. The MathWorks Inc., Matlab Documentation R2016b (2016).

  51. VDI Heat Atlas, (Springer-Verlag, Berlin Heidelberg, 2010)

  52. S.W. Angrist, Direct Energy Conversion (Boston, MA: Allyn and Bacon, 1976)

  53. J. Chen, Z. Yan, and L. Wu, J. Appl. Phys. 79, 8823 (1996).

    Article  Google Scholar 

  54. S. Huang and X. Xu, J. Electron. Mater. 45, 5213 (2016).

    Article  Google Scholar 

  55. C.A. Coello Coello, A survey of constraint handling techniques used with evolutionary algorithms, (Xalapa-Enríquez: Laboratorio Nacional de Informática Avanzada, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Wilbrecht.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wilbrecht, S., Beitelschmidt, M. The Potential of a Cascaded TEG System for Waste Heat Usage in Railway Vehicles. J. Electron. Mater. 47, 3358–3369 (2018). https://doi.org/10.1007/s11664-018-6094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6094-z

Keywords

  • Two-stage thermoelectric generator
  • diesel-electric locomotive
  • exhaust enthalpy usage
  • geometric optimization
  • 1D multi-domain model
  • genetic algorithm