Skip to main content
Log in

Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Transition-metal trichalcogenides MX3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS3 microribbon. The electrical resistivity ρ, thermal conductivity κ, and thermoelectric power S were measured using 3ω method. The weight mean values were found to be ρ = 5 mω m and κ = 10 W K−1 m−1 along the one-dimensional direction (b-axis) of the TiS3 microribbon. Combined with the thermoelectric power S = −530 μV K−1, the figure of merit was calculated as ZT = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS3. We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS3 is attributable to strong coupling between triangular columns consisting of TiS3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Rowe, CRC Handbook, Thermoelectrics (CRC Press, Boca Raton, 1995), Sections A and E.

  2. Reference 1, Section B.

  3. K. Suekuni and T. Takabatake, APL Mater. 4, 104503 (2016).

    Article  Google Scholar 

  4. G. Grüner, Density Waves in Solids (Addison-Wesley, Boston, 1994), Chapter 2.

  5. Reference 4, Chapters 3–7.

  6. Von H.G. Grimmeiss, A. Rabenau, H. Hahn, and P. Ness, Z. Elektrochem. 65, 776 (1961).

  7. H. Imai, Y. Shirakawa, and Y. Kubo, Phys. Rev. B 64, 241104 (2001).

    Article  Google Scholar 

  8. O. Gorochov, A. Katty, N.L. Nagard, C.L. Clement, and D.M. Schleich, Mater. Res. Bull. 18, 111 (1983).

    Article  Google Scholar 

  9. E. Guilmeau, D. Berthebaud, P. Misse, S. Hébert, O. Lebedev, D. Chateigner, C. Martin, and A. Maignan, Chem. Mater. 26, 5585 (2013).

    Article  Google Scholar 

  10. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).

    Article  Google Scholar 

  11. M. Takashiri, M. Takiishi, S. Tanaka, K. Miyazaki, and H. Tsukamoto, J. Appl. Phys. 101, 074301 (2007).

    Article  Google Scholar 

  12. S. Nishino, M. Koyano, K. Suekuni, and K. Ohdaira, J. Electron. Mater. 43, 2151 (2014).

    Article  Google Scholar 

  13. S. Nishino, M. Koyano, and K. Ohdaira, J. Electron. Mater. 44, 2034 (2015).

    Article  Google Scholar 

  14. L. Lu, W. Yi, and D.L. Zhang, Rev. Sci. Instrum. 72, 2996 (2001).

    Article  Google Scholar 

  15. T. Ozaki, Phys. Rev. B 67, 155108 (2003).

    Article  Google Scholar 

  16. T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).

    Article  Google Scholar 

  17. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  18. C.G. Broyden, J. Inst. Math. Appl. 6, 76 (1970).

    Article  Google Scholar 

  19. R. Fletcher, Comput. J. 13, 317 (1970).

    Article  Google Scholar 

  20. D. Goldfarb, Math. Comput. 24, 23 (1970).

    Article  Google Scholar 

  21. D.F. Shanno, Math. Comput. 24, 647 (1970).

    Article  Google Scholar 

  22. A. Banerjee, N. Adams, J. Simons, and R. Shepard, J. Phys. Chem. 89, 52 (1985).

    Article  Google Scholar 

  23. P. Csaszar and P. Pulay, J. Mol. Struct. (Theochem.) 114, 31 (1984).

    Article  Google Scholar 

  24. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  25. J.M. Zaiman, Principles of the Theory of Solids, 2nd edn. (Cambridge University Press, Cambridge, 1995), Chapter 7.

  26. Y. Nakamura, M. Isogawa, T. Ueda, S. Yamasaka, H. Matsui, J. Kikkawa, S. Ikeuchi, T. Oyake, T. Hori, J. Shiomi, and A. Sakai, Nano Energy 12, 845 (2015).

    Article  Google Scholar 

  27. M. Miyata, T. Ozaki, T. Takeuchi, S. Nishino, M. Inukai, and M. Koyano, J. Electron. Mater. (2017). https://doi.org/10.1007/s11664-017-6020-9.

    Google Scholar 

  28. N.P. Ong and J.W. Brill, Phys. Rev. B 15, 5265 (1978).

    Article  Google Scholar 

  29. M. Ido, Mol. Cryst. Liq. Cryst. 77, 809 (1981).

    Google Scholar 

  30. K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Koyano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakuma, T., Nishino, S., Miyata, M. et al. Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3. J. Electron. Mater. 47, 3177–3183 (2018). https://doi.org/10.1007/s11664-018-6086-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6086-z

Keywords

Navigation