Advertisement

Journal of Electronic Materials

, Volume 47, Issue 6, pp 3177–3183 | Cite as

Thermoelectric Properties for a Suspended Microribbon of Quasi-One-Dimensional TiS3

  • Tasuku Sakuma
  • Shunsuke Nishino
  • Masanobu Miyata
  • Mikio Koyano
Topical Collection: International Conference on Thermoelectrics 2017
Part of the following topical collections:
  1. International Conference on Thermoelectrics 2017

Abstract

Transition-metal trichalcogenides MX3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS3 microribbon. The electrical resistivity ρ, thermal conductivity κ, and thermoelectric power S were measured using 3ω method. The weight mean values were found to be ρ = 5 mω m and κ = 10 W K−1 m−1 along the one-dimensional direction (b-axis) of the TiS3 microribbon. Combined with the thermoelectric power S = −530 μV K−1, the figure of merit was calculated as ZT = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS3. We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS3 is attributable to strong coupling between triangular columns consisting of TiS3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.

Keywords

Transition-metal trichalcogenide TiS3 quasi-one-dimensional conductor anisotropy of thermoelectric properties DFT calculation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.W. Rowe, CRC Handbook, Thermoelectrics (CRC Press, Boca Raton, 1995), Sections A and E.Google Scholar
  2. 2.
    Reference 1, Section B.Google Scholar
  3. 3.
    K. Suekuni and T. Takabatake, APL Mater. 4, 104503 (2016).CrossRefGoogle Scholar
  4. 4.
    G. Grüner, Density Waves in Solids (Addison-Wesley, Boston, 1994), Chapter 2.Google Scholar
  5. 5.
    Reference 4, Chapters 3–7.Google Scholar
  6. 6.
    Von H.G. Grimmeiss, A. Rabenau, H. Hahn, and P. Ness, Z. Elektrochem. 65, 776 (1961).Google Scholar
  7. 7.
    H. Imai, Y. Shirakawa, and Y. Kubo, Phys. Rev. B 64, 241104 (2001).CrossRefGoogle Scholar
  8. 8.
    O. Gorochov, A. Katty, N.L. Nagard, C.L. Clement, and D.M. Schleich, Mater. Res. Bull. 18, 111 (1983).CrossRefGoogle Scholar
  9. 9.
    E. Guilmeau, D. Berthebaud, P. Misse, S. Hébert, O. Lebedev, D. Chateigner, C. Martin, and A. Maignan, Chem. Mater. 26, 5585 (2013).CrossRefGoogle Scholar
  10. 10.
    D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990).CrossRefGoogle Scholar
  11. 11.
    M. Takashiri, M. Takiishi, S. Tanaka, K. Miyazaki, and H. Tsukamoto, J. Appl. Phys. 101, 074301 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Nishino, M. Koyano, K. Suekuni, and K. Ohdaira, J. Electron. Mater. 43, 2151 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Nishino, M. Koyano, and K. Ohdaira, J. Electron. Mater. 44, 2034 (2015).CrossRefGoogle Scholar
  14. 14.
    L. Lu, W. Yi, and D.L. Zhang, Rev. Sci. Instrum. 72, 2996 (2001).CrossRefGoogle Scholar
  15. 15.
    T. Ozaki, Phys. Rev. B 67, 155108 (2003).CrossRefGoogle Scholar
  16. 16.
    T. Ozaki and H. Kino, Phys. Rev. B 72, 045121 (2005).CrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  18. 18.
    C.G. Broyden, J. Inst. Math. Appl. 6, 76 (1970).CrossRefGoogle Scholar
  19. 19.
    R. Fletcher, Comput. J. 13, 317 (1970).CrossRefGoogle Scholar
  20. 20.
    D. Goldfarb, Math. Comput. 24, 23 (1970).CrossRefGoogle Scholar
  21. 21.
    D.F. Shanno, Math. Comput. 24, 647 (1970).CrossRefGoogle Scholar
  22. 22.
    A. Banerjee, N. Adams, J. Simons, and R. Shepard, J. Phys. Chem. 89, 52 (1985).CrossRefGoogle Scholar
  23. 23.
    P. Csaszar and P. Pulay, J. Mol. Struct. (Theochem.) 114, 31 (1984).CrossRefGoogle Scholar
  24. 24.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  25. 25.
    J.M. Zaiman, Principles of the Theory of Solids, 2nd edn. (Cambridge University Press, Cambridge, 1995), Chapter 7.Google Scholar
  26. 26.
    Y. Nakamura, M. Isogawa, T. Ueda, S. Yamasaka, H. Matsui, J. Kikkawa, S. Ikeuchi, T. Oyake, T. Hori, J. Shiomi, and A. Sakai, Nano Energy 12, 845 (2015).CrossRefGoogle Scholar
  27. 27.
    M. Miyata, T. Ozaki, T. Takeuchi, S. Nishino, M. Inukai, and M. Koyano, J. Electron. Mater. (2017).  https://doi.org/10.1007/s11664-017-6020-9.Google Scholar
  28. 28.
    N.P. Ong and J.W. Brill, Phys. Rev. B 15, 5265 (1978).CrossRefGoogle Scholar
  29. 29.
    M. Ido, Mol. Cryst. Liq. Cryst. 77, 809 (1981).Google Scholar
  30. 30.
    K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Tasuku Sakuma
    • 1
  • Shunsuke Nishino
    • 1
  • Masanobu Miyata
    • 1
  • Mikio Koyano
    • 1
  1. 1.Japan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations