Skip to main content
Log in

First-Principles Investigation of Electronic, Half-Metallic, and Optical Properties of Ti-Doped MgTe Semiconductors with Various Concentrations of Dopant

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The electronic, magnetic, and optical properties of Ti-doped semiconductors Mg1−xTi x Te at concentrations of x = 0.25, 0.50, and 0.75 have been investigated in the framework of density functional theory. Spin-polarized calculations of the electronic structure of Mg1−xTi x Te revealed that these compounds are half-metallic ferromagnetic materials with 100% spin polarization at the Fermi level. Large half-metallic gaps of 1.69 eV, 1.18 eV, and 0.98 eV were obtained for these compounds with Ti concentration of 0.25, 0.50, and 0.75, respectively. In addition, the origin of the half-metallic gap in Mg1−xTi x Te is discussed based on the partial density of states. It is found that hybridization between Ti-3d and Te-5p states and the large exchange splitting of the Ti-3d states are responsible for the half-metallic property of Mg1−xTi x Te compounds. The Curie temperatures of Mg0.5Ti0.5Te and Mg0.25Ti0.75Te were predicted to be 572 K and 959 K, respectively, within the mean field approximation. The appropriate half-metallic properties of Mg1−xTi x Te (x = 0.50 and 0.75) make them appropriate electronic materials for use in spintronics applications. The optical properties of pure and Ti-doped MgTe semiconductors, such as the dielectric function, extinction coefficient, absorption coefficient, reflectivity, and optical conductivity, were also considered. It was found that Ti doping considerably changed the optical properties of the MgTe semiconductors, especially at lower frequencies, such that these materials can be used in optical devices such as photodetectors and solar cells over wider ranges of frequency than corresponding undoped material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Žutić, J. Fabian, and S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  Google Scholar 

  2. S. Bandyopadhyay and M. Cahay, Introduction to Spintronics, 2nd ed. (Boca Raton: CRC Press, 2015).

    Google Scholar 

  3. T. Shinjo, Nanomagnetism and Spintronics (Amsterdam: Elsevier Science, 2013).

    Google Scholar 

  4. B. Azzerboni, G. Asti, L. Pareti, and M. Ghidini, Magnetic Nanostructures in Modern Technology: Spintronics, Magnetic MEMS and Recording (Berlin: Springer, 2007).

    Google Scholar 

  5. C.Y. Fong, J.E. Pask, and L.H. Yang, Half-Metallic Materials and Their Properties (Singapore: World Scientific, 2013).

    Book  Google Scholar 

  6. S. von Oehsen, Spin-polarized Currents for Spintronic Devices: Point-Contact Andreev Reflection and Spin Filters (Göttingen: Cuvillier, 2007).

    Google Scholar 

  7. R.A. de Groot, F.M. Mueller, P.G.V. Engen, and K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983).

    Article  Google Scholar 

  8. M. Allaf Behbahani, M. Moradi, M. Rostami, and S. Davatolhagh, J. Phys. Chem. Solids 92, 85 (2016).

    Article  Google Scholar 

  9. S. Berri, M. Ibrir, D. Maouche, and M. Attallah, Comput. Condens. Matter 1, 26 (2014).

    Article  Google Scholar 

  10. S. Berri, Chin. J. Phys. 55, 195 (2017).

    Article  Google Scholar 

  11. J. Du, S. Dong, Y.-L. Lu, H. Zhao, L. Feng, and L.Y. Wang, J. Magn. Magn. Mater. 428, 250 (2017).

    Article  Google Scholar 

  12. S. Bahramian and F. Ahmadian, J. Magn. Magn. Mater. 424, 122 (2017).

    Article  Google Scholar 

  13. M. Dehghanzadeh and F. Ahmadian, Solid State Commun. 251, 50 (2017).

    Article  Google Scholar 

  14. F. Taşkın, M. Atiş, O. Canko, S. Kervan, and N. Kervan, J. Magn. Magn. Mater. 426, 473 (2017).

    Article  Google Scholar 

  15. X.T. Wang, T.T. Lin, H. Rozale, X.F. Dai, and G.D. Liu, J. Magn. Magn. Mater. 402, 190 (2016).

    Article  Google Scholar 

  16. R.J. Caraballo Vivas, S.S. Pedro, C. Cruz, J.C.G. Tedesco, A.A. Coelho, A.M.G. Carvalho, D.L. Rocco, and M.S. Reis, Mater. Chem. Phys. 174, 23 (2016).

    Article  Google Scholar 

  17. Y. Hu and J.-M. Zhang, Mater. Chem. Phys. 192, 253 (2017).

    Article  Google Scholar 

  18. H. Qiu, Z. Wang, and X. Sheng, Phys. Lett. A 377, 347 (2013).

    Article  Google Scholar 

  19. S.E.A. Yousif and O.A. Yassin, J. Alloys Compd. 506, 456 (2010).

    Article  Google Scholar 

  20. Y. Zhang, V. Ji, and K.-W. Xu, Mater. Chem. Phys. 162, 711 (2015).

    Article  Google Scholar 

  21. Y. Aharbil, H. Labrim, S. Benmokhtar, M.A. Haddouch, L. Bahmad, A. Belhaj, H. Ez-Zahraouy, and A. Benyoussef, Mater. Chem. Phys. 183, 588 (2016).

    Article  Google Scholar 

  22. S. Kervan and N. Kervan, J. Magn. Magn. Mater. 382, 63 (2015).

    Article  Google Scholar 

  23. S.F. Rabbani and I.B.S. Banu, Comput. Mater. Sci. 101, 281 (2015).

    Article  Google Scholar 

  24. G. Jaiganesh and S.M. Jaya, Comput. Mater. Sci. 102, 85 (2015).

    Article  Google Scholar 

  25. B. Ul Haq, R. Ahmed, A. Shaari, N. Ali, Y. Al-Douri, and A.H. Reshak, Mater. Sci. Semicond. Process. 43, 123 (2016).

    Article  Google Scholar 

  26. Q. Zhao, Z. Xiong, L. Luo, Z. Sun, Z. Qin, L. Chen, and N. Wu, Appl. Surf. Sci. 396, 480 (2017).

    Article  Google Scholar 

  27. S.F. Rabbani and I.B.S. Banu, J. Alloys Compd. 695, 3131 (2017).

    Article  Google Scholar 

  28. H.S. Saini, M.K. Kashyap, M. Kumar, J. Thakur, M. Singh, A.H. Reshak, and G.S.S. Saini, J. Alloys Compd. 649, 184 (2015).

    Article  Google Scholar 

  29. M. Boutaleb, B. Doumi, A. Tadjer, and A. Sayede, J. Magn. Magn. Mater. 397, 132 (2016).

    Article  Google Scholar 

  30. M. Rostami, M. Moradi, Z. Javdani, and H. Salehi, Mater. Sci. Semicond. Process. 38, 218 (2015).

    Article  Google Scholar 

  31. Y.-S. Kim, Y.-C. Chung, and S.-C. Yi, Mater. Sci. Eng. B 126, 194 (2006).

    Article  Google Scholar 

  32. A. Ait Raiss, Y. Sbai, L. Bahmad, and A. Benyoussef, J. Magn. Magn. Mater. 385, 295 (2015).

    Article  Google Scholar 

  33. M.S. Akhtar, M.A. Malik, S. Riaz, and S. Naseem, Mater. Chem. Phys. 160, 440 (2015).

    Article  Google Scholar 

  34. T. Schäpers, Semiconductor Spintronics (Berlin: De Gruyter, 2016).

    Book  Google Scholar 

  35. T. Jungwirth, J. König, J. Sinova, J. Kučera, and A.H. MacDonald, Phys. Rev. B 66, 012402 (2002).

    Article  Google Scholar 

  36. S. Dhara, B. Sundaravel, K.G.M. Nair, R. Kesavamoorthy, M.C. Valsakumar, T.V.C. Rao, L.C. Chen, and K.H. Chen, Appl. Phys. Lett. 88, 173110 (2006).

    Article  Google Scholar 

  37. V. Zayets, M.C. Debnath, and K. Ando, Appl. Phys. Lett. 84, 565 (2004).

    Article  Google Scholar 

  38. M.C. Debnath, V. Zayets, and K. Ando, Appl. Phys. Lett. 87, 091112 (2005).

    Article  Google Scholar 

  39. K. Ramanujam, I. Masaya, T. Ken, T. Kazuki, G. Fumitaka, and A. Eisuke, Jpn. J. Appl. Phys. 40, 3161 (2001).

    Article  Google Scholar 

  40. M. Kamruzzaman, T.R. Luna, P. Jiban, and M.G.M. Anowar, Semicond. Sci. Technol. 27, 035017 (2012).

    Article  Google Scholar 

  41. M.W. Wang, M.C. Phillips, J.F. Swenberg, E.T. Yu, J.O. McCaldin, and T.C. McGill, J. Appl. Phys. 73, 4660 (1993).

    Article  Google Scholar 

  42. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, Karlheinz Schwarz (Wien: Techn. Universität Wien, 2001).

    Google Scholar 

  43. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  44. K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  45. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  46. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B 83, 195134 (2011).

    Article  Google Scholar 

  47. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944).

    Article  Google Scholar 

  48. G. Gökoğlu, M. Durandurdu, and O. Gülseren, Comput. Mater. Sci. 47, 593 (2009).

    Article  Google Scholar 

  49. N.A. Noor, S.M. Alay-e-Abbas, M.U. Sohaib, S.M.G. Abbas, and A. Shaukat, J. Magn. Magn. Mater. 374, 164 (2015).

    Article  Google Scholar 

  50. A. Waag, H. Heinke, S. Scholl, C.R. Becker, and G. Landwehr, J. Cryst. Growth 131, 607 (1993).

    Article  Google Scholar 

  51. G.V. Samsonov, Handbook of the Physicochemical Properties of the Elements (Berlin: Springer, 2012).

    Google Scholar 

  52. S. Duman, S. Bağcı, H.M. Tütüncü, and G.P. Srivastava, Phys. Rev. B 73, 205201 (2006).

    Article  Google Scholar 

  53. A. Fleszar, Phys. Rev. B 64, 245204 (2001).

    Article  Google Scholar 

  54. J.P. Perdew, Int. J. Quantum Chem. 28, 497 (1985).

    Article  Google Scholar 

  55. S. Duman, S. Bağcı, H. Tütüncü, and G. Srivastava, Phys. Rev. B 73, 205201 (2006).

    Article  Google Scholar 

  56. A. Los and V. Los, Magnetic Properties of Transition-Metal-Doped Silicon Carbide Diluted Magnetic Semiconductors (London: INTECH Open Access Publisher, 2011).

    Book  Google Scholar 

  57. A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M.S.S. Brooks, T. Gasche, S. Auluck, and J.M. Wills, Phys. Rev. B 54, 1673 (1996).

    Article  Google Scholar 

  58. M. Grundmann, The Physics of Semiconductors: An Introduction Including Nanophysics and Applications (Berlin: Springer, 2010).

    Book  Google Scholar 

  59. W. Schäfer and M. Wegener, Semiconductor Optics and Transport Phenomena (Berlin Heidelberg: Springer, 2013).

    Google Scholar 

  60. D.-M. Ma, Y.-Y. Chai, V. Wang, E.-L. Li, and W. Shi, Comput. Mater. Sci. 113, 75 (2016).

    Article  Google Scholar 

  61. H. Castán, E. Pérez, H. García, S. Dueñas, L. Bailón, J. Olea, D. Pastor, E. García-Hemme, M. Irigoyen, and G. González-Díaz, J. Appl. Phys. 113, 024104 (2013).

    Article  Google Scholar 

  62. V. Wang, W. Xiao, L.J. Kang, R.J. Liu, H. Mizuseki, and Y. Kawazoe, J. Phys. D Appl. Phys. 48, 015101 (2015).

    Article  Google Scholar 

  63. A. Abbad, W. Benstaali, H.A. Bentounes, S. Bentata, and A. Belaidi, Comput. Mater. Sci. 70, 19 (2013).

    Article  Google Scholar 

  64. D. Novko, M. Šunjić, and V. Despoja, Phys. Rev. B 93, 125413 (2016).

    Article  Google Scholar 

  65. N.V. Joshi, Photoconductivity: Art: Science and Technology (London: Taylor & Francis, 1990).

    Google Scholar 

  66. O.S. Martinez, R.C. Palomera, J.S. Cruz, and X. Mathew, Phys. Status Solidi 6, S214 (2009).

    Article  Google Scholar 

  67. M.V. Gapanovich, I.N. Odin, V.V. Popova, V.F. Kozlovskii, and G.F. Novikov, Inorg. Mater. 52, 890 (2016).

    Article  Google Scholar 

  68. G.Y. Jia, Y. Liu, J.Y. Gong, D.Y. Lei, D.L. Wang, and Z.X. Huang, J. Mater. Chem. C 4, 8822 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Moradi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allaf Behbahani, M., Moradi, M. & Rostami, M. First-Principles Investigation of Electronic, Half-Metallic, and Optical Properties of Ti-Doped MgTe Semiconductors with Various Concentrations of Dopant. J. Electron. Mater. 47, 2565–2575 (2018). https://doi.org/10.1007/s11664-018-6085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6085-0

Keywords

Navigation