Abstract
A nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr) system has been synthesized by a modified combustion technique. The cation-deficient calzirtite (Ca2Ti2Zr5O16) is found to be a tetragonal structure with the space group I4(1)/acd. The average size of the particle from the transmission electron microscopy image is estimated to be 23.30 nm and 20.16 nm for Ca2Ti2Zr5O16 and Ba2Ti2Zr5O16, respectively. The optical bandgap calculated using a Tauc plot is between 3.01 eV and 3.46 eV. Raman and Fourier transform infrared spectroscopy (FTIR) studies were carried out to confirm the phase purity of the sample. The scanning electron microscopy (SEM) image of a Ca2Ti2Zr5O16 sample sintered at 1360°C for 3 h shows minimum porosity with 96% of the theoretical density. The frequency-dependent dielectric study shows that the dielectric constant is maximized at low frequencies and decreases as the frequency increases. The Cole–Cole plot reveals that the material exhibits conduction due to the contributions of grain, grain boundary and electrode effects. The photoluminescence spectra of the samples were recorded and the transitions causing emission have been identified.
This is a preview of subscription content, access via your institution.
References
M. Jafar, P. Sengupta, S.N. Achary, and A.K. Tyagi, J. Eur. Ceram. Soc. 34, 4373 (2014).
Y.A. Pyatenko and Z.V. Pudovkina, Sov. Phys. Crystallogr. 6, 196 (1961).
H.J. Rossell, Acta Cryst. B38, 593 (1982).
W. Sinclair, R.A. Eggleton, and G.M. Mclaughlin, Am. Mineral. 71, 815 (1986).
D. Nishio and T. Minakawa, J. Mineral. Petrol. Sci. 99, 42 (2004).
S. Solomon, A. George, J.K. Thomas, and A. John, J. Electron. Mater. 44, 28 (2015).
A. George, J.K. Thomas, A. John, and S. Solomon, Solid State Ion. 278, 245 (2015).
A.R. Bushroa, R.G. Rahbari, H.H. Masjuki, and M.R. Muhamad, Vacuum 86, 1107 (2012).
G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).
B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction (New Delhi: Prentice Hall, 2001).
S.S. Gaikwad, A.V. Borhade, and V.B. Gaikwad, Der Pharma Chem. 4, 184 (2012).
V. dos Santos and C.P. Bergmann, Adv. Cryst. Process. (2012) https://doi.org/10.5772/36385.
A. Salamat, P.F. McMillan, S. Firth, K. Woodhead, A.L. Hector, G. Garbarino, M.C. Stennett, and N.C. Hyatt, Inorg. Chem. 52, 1550 (2013).
D.G. Barton, M. Shtein, R.D. Wilson, S.L. Soled, and E. Iglesia, J. Phys. Chem. B. 103, 630 (1999).
B. Choudhury, M. Dey, and A. Choudhury, Int. Nano Lett. 3, 25 (2013).
H. Gleiter, Acta Mater. 48, 1 (2000).
C.P. Cameron and R. Raj, J. Am. Ceram. Soc. 71, 1031 (1988).
V.V. Skorokhod and A.V. Ragulya, Nanostruct. Mater. Sci. Tech. 387 (1998) https://doi.org/10.1007/978-94-011-5002-6.
C. Suryanarayana, JOM J. Min. Metals Mater. Soc. 54, 24 (2002).
C.P. Smyth, Dielectric Behaviour and Structure (New York: Me-graw Hill, 1965).
S. Suresh, J. Cryst. Process Technol. 3, 87 (2013).
C. Ranjith, D. Inbaseelan, and S. Saravanan, Int. J. Chem. Tech. Res. 7, 1616 (2015).
A. Prasad and A. Basu, Ionics (Kiel) 19, 71 (2013).
N. Pandey, A.K. Thakur, and R.N.P. Choudhary, Indian J. Eng. Mater. Sci. 15, 191 (2008).
S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, P.K. Pujari, and T. Sheela, J. Adv. Dielectr. 4, 1 (2014).
T.M. Stevels, Encyclopedia of Physics, vol. 4 (Berlin: Springer, 1957), pp. 350–391.
H.M. EL-Mallah, Acta Phys. Pol., A 122, 174 (2012).
C.R. Mariappan and G. Govindaraj, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. (2002) https://doi.org/10.1016/s0921-5107(02)00083-1.
D.K. Mahato, A. Dutta, and T.P. Sinha, Phys. B Condens. Matter. 406, 2703 (2011).
N.A. Hegab, A.E. Bekheet, M.A. Afifi, L.A. Wahaba, and H.A. Shehata, J. Ovonic Res. (2007) https://doi.org/10.1088/0953-8984/19/49/496218.
P.R. Das, J. Mod. Phys. 3, 870 (2012).
C. Balarew and R. Duhlev, J. Solid State Chem. (1984) https://doi.org/10.1016/0022-4596(84)90240-8.
H.P. de Oliveira, M.V.B. dos Santos, C.G. dos Santos, and C.P. de Melo, Mater. Charact. 50, 223 (2003).
H.P. de Oliveira, M.V.B. dos Santos, C.G. dos Santos, and C.P. de Melo, Synth. Met. 135–136, 447 (2003).
J. Płcharski and W. Weiczorek, Solid State Ion. (1988) https://doi.org/10.1016/0167-2738(88)90315-3.
S. Sahoo, U. Dash, S.K.S. Parashar, and S.M. Ali, J. Adv. Ceram. 2, 291 (2013).
D.B. Dhwajam, M.B. Suresh, U.S. Hareesh, J.K. Thomas, S. Solomon, and A. John, J. Mater. Sci.: Mater. Electron. 23, 653 (2012).
K. Sambasiva Rao, D. Madhava Prasad, P. Murali Krishna, B. Tilak, and K.C. Varadarajulu, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. (2006) https://doi.org/10.1016/j.mseb.2006.06.030.
E. Barsoukov and J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed. (Hoboken: Wiley, 2005), p. 595.
J.R. Macdonald, Solid State Ion. 13, 147 (1984).
R. Payling and P. Larkins, Optical Emission Lines of Elements, 1st ed. (New York: Wiley, 2000).
Acknowledgements
The authors acknowledge the Kerala State Council for Science, Technology and Environment, Government of Kerala for financial assistance.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sandeep, K., Thomas, J.K. & Solomon, S. Structural, Optical and Impedance Spectroscopic Characterizations of Nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr). J. Electron. Mater. 47, 2417–2428 (2018). https://doi.org/10.1007/s11664-018-6077-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-018-6077-0
Keywords
- Nanostructure
- combustion synthesis
- calzirtite
- ionic conduction