Skip to main content

Structural, Optical and Impedance Spectroscopic Characterizations of Nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr)

Abstract

A nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr) system has been synthesized by a modified combustion technique. The cation-deficient calzirtite (Ca2Ti2Zr5O16) is found to be a tetragonal structure with the space group I4(1)/acd. The average size of the particle from the transmission electron microscopy image is estimated to be 23.30 nm and 20.16 nm for Ca2Ti2Zr5O16 and Ba2Ti2Zr5O16, respectively. The optical bandgap calculated using a Tauc plot is between 3.01 eV and 3.46 eV. Raman and Fourier transform infrared spectroscopy (FTIR) studies were carried out to confirm the phase purity of the sample. The scanning electron microscopy (SEM) image of a Ca2Ti2Zr5O16 sample sintered at 1360°C for 3 h shows minimum porosity with 96% of the theoretical density. The frequency-dependent dielectric study shows that the dielectric constant is maximized at low frequencies and decreases as the frequency increases. The Cole–Cole plot reveals that the material exhibits conduction due to the contributions of grain, grain boundary and electrode effects. The photoluminescence spectra of the samples were recorded and the transitions causing emission have been identified.

This is a preview of subscription content, access via your institution.

References

  1. M. Jafar, P. Sengupta, S.N. Achary, and A.K. Tyagi, J. Eur. Ceram. Soc. 34, 4373 (2014).

    Article  Google Scholar 

  2. Y.A. Pyatenko and Z.V. Pudovkina, Sov. Phys. Crystallogr. 6, 196 (1961).

    Google Scholar 

  3. H.J. Rossell, Acta Cryst. B38, 593 (1982).

    Article  Google Scholar 

  4. W. Sinclair, R.A. Eggleton, and G.M. Mclaughlin, Am. Mineral. 71, 815 (1986).

    Google Scholar 

  5. D. Nishio and T. Minakawa, J. Mineral. Petrol. Sci. 99, 42 (2004).

    Article  Google Scholar 

  6. S. Solomon, A. George, J.K. Thomas, and A. John, J. Electron. Mater. 44, 28 (2015).

    Article  Google Scholar 

  7. A. George, J.K. Thomas, A. John, and S. Solomon, Solid State Ion. 278, 245 (2015).

    Article  Google Scholar 

  8. A.R. Bushroa, R.G. Rahbari, H.H. Masjuki, and M.R. Muhamad, Vacuum 86, 1107 (2012).

    Article  Google Scholar 

  9. G.K. Williamson and W.H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  10. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction (New Delhi: Prentice Hall, 2001).

    Google Scholar 

  11. S.S. Gaikwad, A.V. Borhade, and V.B. Gaikwad, Der Pharma Chem. 4, 184 (2012).

    Google Scholar 

  12. V. dos Santos and C.P. Bergmann, Adv. Cryst. Process. (2012) https://doi.org/10.5772/36385.

  13. A. Salamat, P.F. McMillan, S. Firth, K. Woodhead, A.L. Hector, G. Garbarino, M.C. Stennett, and N.C. Hyatt, Inorg. Chem. 52, 1550 (2013).

    Article  Google Scholar 

  14. D.G. Barton, M. Shtein, R.D. Wilson, S.L. Soled, and E. Iglesia, J. Phys. Chem. B. 103, 630 (1999).

    Article  Google Scholar 

  15. B. Choudhury, M. Dey, and A. Choudhury, Int. Nano Lett. 3, 25 (2013).

    Article  Google Scholar 

  16. H. Gleiter, Acta Mater. 48, 1 (2000).

    Article  Google Scholar 

  17. C.P. Cameron and R. Raj, J. Am. Ceram. Soc. 71, 1031 (1988).

    Article  Google Scholar 

  18. V.V. Skorokhod and A.V. Ragulya, Nanostruct. Mater. Sci. Tech. 387 (1998) https://doi.org/10.1007/978-94-011-5002-6.

  19. C. Suryanarayana, JOM J. Min. Metals Mater. Soc. 54, 24 (2002).

    Article  Google Scholar 

  20. C.P. Smyth, Dielectric Behaviour and Structure (New York: Me-graw Hill, 1965).

    Google Scholar 

  21. S. Suresh, J. Cryst. Process Technol. 3, 87 (2013).

    Article  Google Scholar 

  22. C. Ranjith, D. Inbaseelan, and S. Saravanan, Int. J. Chem. Tech. Res. 7, 1616 (2015).

    Google Scholar 

  23. A. Prasad and A. Basu, Ionics (Kiel) 19, 71 (2013).

    Article  Google Scholar 

  24. N. Pandey, A.K. Thakur, and R.N.P. Choudhary, Indian J. Eng. Mater. Sci. 15, 191 (2008).

    Google Scholar 

  25. S.G. Rathod, R.F. Bhajantri, V. Ravindrachary, P.K. Pujari, and T. Sheela, J. Adv. Dielectr. 4, 1 (2014).

    Article  Google Scholar 

  26. T.M. Stevels, Encyclopedia of Physics, vol. 4 (Berlin: Springer, 1957), pp. 350–391.

    Google Scholar 

  27. H.M. EL-Mallah, Acta Phys. Pol., A 122, 174 (2012).

    Article  Google Scholar 

  28. C.R. Mariappan and G. Govindaraj, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. (2002) https://doi.org/10.1016/s0921-5107(02)00083-1.

  29. D.K. Mahato, A. Dutta, and T.P. Sinha, Phys. B Condens. Matter. 406, 2703 (2011).

    Article  Google Scholar 

  30. N.A. Hegab, A.E. Bekheet, M.A. Afifi, L.A. Wahaba, and H.A. Shehata, J. Ovonic Res. (2007) https://doi.org/10.1088/0953-8984/19/49/496218.

  31. P.R. Das, J. Mod. Phys. 3, 870 (2012).

    Article  Google Scholar 

  32. C. Balarew and R. Duhlev, J. Solid State Chem. (1984) https://doi.org/10.1016/0022-4596(84)90240-8.

  33. H.P. de Oliveira, M.V.B. dos Santos, C.G. dos Santos, and C.P. de Melo, Mater. Charact. 50, 223 (2003).

    Article  Google Scholar 

  34. H.P. de Oliveira, M.V.B. dos Santos, C.G. dos Santos, and C.P. de Melo, Synth. Met. 135–136, 447 (2003).

    Article  Google Scholar 

  35. J. Płcharski and W. Weiczorek, Solid State Ion. (1988) https://doi.org/10.1016/0167-2738(88)90315-3.

  36. S. Sahoo, U. Dash, S.K.S. Parashar, and S.M. Ali, J. Adv. Ceram. 2, 291 (2013).

    Article  Google Scholar 

  37. D.B. Dhwajam, M.B. Suresh, U.S. Hareesh, J.K. Thomas, S. Solomon, and A. John, J. Mater. Sci.: Mater. Electron. 23, 653 (2012).

    Google Scholar 

  38. K. Sambasiva Rao, D. Madhava Prasad, P. Murali Krishna, B. Tilak, and K.C. Varadarajulu, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. (2006) https://doi.org/10.1016/j.mseb.2006.06.030.

  39. E. Barsoukov and J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed. (Hoboken: Wiley, 2005), p. 595.

    Book  Google Scholar 

  40. J.R. Macdonald, Solid State Ion. 13, 147 (1984).

    Article  Google Scholar 

  41. R. Payling and P. Larkins, Optical Emission Lines of Elements, 1st ed. (New York: Wiley, 2000).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Kerala State Council for Science, Technology and Environment, Government of Kerala for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Solomon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sandeep, K., Thomas, J.K. & Solomon, S. Structural, Optical and Impedance Spectroscopic Characterizations of Nanocrystalline A2Ti2Zr5O16 (A = Mg, Ca, Ba and Sr). J. Electron. Mater. 47, 2417–2428 (2018). https://doi.org/10.1007/s11664-018-6077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6077-0

Keywords

  • Nanostructure
  • combustion synthesis
  • calzirtite
  • ionic conduction