Journal of Electronic Materials

, Volume 47, Issue 5, pp 2679–2686 | Cite as

Nanoscale High-k Dielectrics for Junctionless Nanowire Transistor for Drain Current Analysis

  • J. Charles Pravin
  • P. Prajoon
  • Flavia Princess Nesamania
  • G. Srikesh
  • P. Senthil Kumar
  • D. Nirmal


Hafnium oxide (HfO2) nanoparticles were prepared by a chemical precipitation method and its physical and electrical properties were investigated. HfO2 thin films were prepared via a dip-coating method using the synthesized HfO2 nanoparticles. The crystallinity and resistivity of both prepared thin films were analysed by x-ray diffraction and impedance analyser. The crystalline size was found to be 8 nm and 13 nm for HfO2 and SiO2 thin films, respectively. The electrical (bulk) resistance was calculated by fitting the complex impedance plane using z-view software, and was found to be 2.15 × 107 Ω for HfO2, whereas it was found to be 3.6 × 105 Ω for SiO2 thin films. Junctionless nanowire transistors were implemented using HfO2 dielectric and performance was compared to SiO2 gate dielectric. The results revealed that nano-sized HfO2 proves to be a better gate dielectric material than conventional gate dielectrics. Thus, the nano-sized HfO2 based junctionless transistor device is more suitable for future low power applications.


Electronics device materials high-k gate dielectrics materials material characterization device simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Nirmal, B. Nalini, and P. Vijayakumar, Integr. Ferroelectr. 121, 31 (2010).CrossRefGoogle Scholar
  2. 2.
    H. Ohta, A. Nagashima, M. Ito, M. Hori, and T. Goto, J. Vac. Sci. Technol. B 18, 2486 (2000).CrossRefGoogle Scholar
  3. 3.
    W. Zhu, D. Neumayer, V. Perebeinos, and P. Avouris, Nano Lett. 10, 3572 (2010).CrossRefGoogle Scholar
  4. 4.
    K.Y. Gao, Th Seyller, L. Ley, F. Ciobanu, G. Pensl, A. Tadich, J.D. Riley, and R.G.C. Leckey, Appl. Phys. Lett. 83, 1830 (2003).CrossRefGoogle Scholar
  5. 5.
    Y. Xuan, Y.Q. Wu, H.C. Lin, T. Shen, and D.Y. Peide, IEEE Electron Device Lett. 28, 935 (2007).CrossRefGoogle Scholar
  6. 6.
    A. Ramadoss, K. Krishnamoorthy, and S.J. Kim, Mater. Lett. 75, 215 (2012).CrossRefGoogle Scholar
  7. 7.
    M. Vargas, N.R. Murphy, and C.V. Ramana, Opt. Mater. 37, 621 (2014).CrossRefGoogle Scholar
  8. 8.
    X. Luo, W. Zhou, S.V. Ushakov, A. Navrotsky, and A.A. Demkov, Phys. Rev. B 80, 134119 (2009).CrossRefGoogle Scholar
  9. 9.
    A.J. Waldorf, J.A. Dobrowolski, B.T. Sullivan, and L.M. Plante, Appl. Opt. 32, 5583 (1993).CrossRefGoogle Scholar
  10. 10.
    M.F. Al-Kuhaili, S.M.A. Durrani, and E.E. Khawaja, J. Phys. D 37, 1254 (2004).CrossRefGoogle Scholar
  11. 11.
    S.A. Eliziario, L.S. Cavalcante, J.C. Sczancoski, P.S. Pizani, J.A. Varela, J.W.M. Espinosa, and E. Longo, Nanoscale Res. Lett. 4, 1371 (2009).CrossRefGoogle Scholar
  12. 12.
    P.E. Meskin, F.Y. Sharikov, V.K. Ivanov, B.R. Churagulov, and Y.D. Tretyakov, Mater. Chem. Phys. 104, 439 (2007).CrossRefGoogle Scholar
  13. 13.
    G. Srikesh and A.S. Nesaraj, Ceram. Int. 42, 5001 (2016).CrossRefGoogle Scholar
  14. 14.
    G. Ramadoss and G. Srikesh, J. Alloys Compd. 544, 115 (2012).CrossRefGoogle Scholar
  15. 15.
    D.A. Neumayer and E. Cartier, J. Appl. Phys. 90, 1801 (2001).CrossRefGoogle Scholar
  16. 16.
    P. Senthil Kumar, A. Sakunthala, M. Prabu, M.V. Reddy, and R. Joshi, Solid State Ion. 267, 1 (2014).CrossRefGoogle Scholar
  17. 17.
    X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Chem. Commun. 47, 3141 (2011).CrossRefGoogle Scholar
  18. 18.
    G. Hu, P. Xiang, Z. Ding, R. Liu, L. Wang, and T.-A. Tang, IEEE Trans. Electron Devices 61, 688 (2014).CrossRefGoogle Scholar
  19. 19.
    J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, and I. Ferain, Nat. Nanotechnol. 5, 225 (2010).CrossRefGoogle Scholar
  20. 20.
    H. Lou, L. Zhang, Y. Zhu, X. Lin, S. Yang, J. He, and M. Chan, IEEE Trans Electron Devices 59, 1829 (2012).CrossRefGoogle Scholar
  21. 21.
    J.C. Pravin, D. Nirmal, P. Prajoon, and M.A. Menokey, IEEE Trans Electron Devices 63, 3782 (2016).CrossRefGoogle Scholar
  22. 22.
    N. MohanKumar, B. Syamal, and C.K. Sarkar, IEEE Trans Electron Device 57, 820 (2010).CrossRefGoogle Scholar
  23. 23.
    A. Bouazra, S. Abdi-Ben Nasrallah, M. Said, and A. Poncet, Res. Lett. Phys. 2008, 1 (2008).CrossRefGoogle Scholar
  24. 24.
    J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).CrossRefGoogle Scholar
  25. 25.
    C.R. Manoj and V.R. Rao, IEEE Electron Device Lett. 28, 295 (2007).CrossRefGoogle Scholar
  26. 26.
    J. Ajayan and D. Nirmal, Superlattices Microstruct. 86, 1 (2015).CrossRefGoogle Scholar
  27. 27.
    D. Nirmal, P. Vijayakumar, D.M. Thomas, B.K. Jebalin, and N. Mohankumar, Microelectron. Reliab. 53, 499 (2013).CrossRefGoogle Scholar
  28. 28.
    J. Charles Pravin, D. Nirmal, P. Prajoon, and J. Ajayan, Phys. E. 83, 95 (2016).CrossRefGoogle Scholar
  29. 29.
    T.V. Perevalov, M.V. Ivanov, and V.A. Gritsenko, Microelectron. Eng. 88, 1475 (2011).CrossRefGoogle Scholar
  30. 30.
    J. Robertson and B. Falabretti, J. Appl. Phys. 100, 014111 (2006).CrossRefGoogle Scholar
  31. 31.
    N.V. Nguyen, A.V. Davydov, and D. Chandler-Horowitz, Appl. Phys. Lett. 87, 192903 (2005).CrossRefGoogle Scholar
  32. 32.
    J.L. Alay and M. Hirose, J. Appl. Phys. 81, 1606 (1997).CrossRefGoogle Scholar
  33. 33.
    S. Sayan, E. Garfunkel, and S. Suzer, Appl. Phys. Lett. 80, 2135 (2002).CrossRefGoogle Scholar
  34. 34.
    H. Malitson, JOSA 55, 1205 (1965).CrossRefGoogle Scholar
  35. 35.
    M. Jerman, Z. Qiao, and D. Mergel, Appl. Opt. 44, 3006 (2005).CrossRefGoogle Scholar
  36. 36.
    D. Nirmal, P. Vijayakumar, P.P.C. Samuel, B.K. Jebalin, and N. Mohankumar, Int. J. Electron. 100, 803 (2013).CrossRefGoogle Scholar
  37. 37.
    M. El-Shahat and H. Anis, J. Adv. Res. 5, 569 (2014).CrossRefGoogle Scholar
  38. 38.
    B.N. Dash, P. Dash, R. Biswal, and N.C. Mishra, J. Comput. Theor. Nanosci. 20, 601 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.VLSI Research Lab, Department of Electronics and Communication EngineeringKalasalingam Academy of Research and EducationKrishnankoilIndia
  2. 2.Department of Electronics and Communication EngineeringProvidence College of EngineeringChengannurIndia
  3. 3.VLSI Laboratory, Department of Electronics and Communication EngineeringKarunya Institute of Technology and SciencesCoimbatoreIndia
  4. 4.Material Chemistry Laboratory, Department of ChemistryKarunya UniversityCoimbatoreIndia
  5. 5.Department of PhysicsKPR Institute of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations