Skip to main content

Advertisement

Log in

Thermoelectric System Absorbing Waste Heat from a Steel Ladle

  • Topical Collection: International Conference on Thermoelectrics 2017
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

China’s iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6–2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83–304 W/m2. This system is shown to be a promising approach for energy recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kuroki, R. Murai, K. Makino, K. Nagano, T. Kajihara, H. Kaibe, H. Hachiuma, and H. Matsuno, J. Electron. Mater. 44, 2151 (2015).

    Article  Google Scholar 

  2. X. Meng, B. Lu, M. Zhu, and R.O. Suzuki, J. Electron. Mater. 46, 5136 (2017).

    Article  Google Scholar 

  3. S. Brueckner, L. Miró, L.F. Cabeza, M. Pehnt, and E. Laevemann, Renew. Sustain. Energy Rev. 38, 164 (2014).

    Article  Google Scholar 

  4. K. Sun, C.T. Tseng, D.S.H. Wong, S.S. Shieh, S.S. Jang, J.L. Kang, and W.D. Hsieh, Energy 80, 275 (2015).

    Article  Google Scholar 

  5. P. Wu and C.J. Yang, ISIJ Int. 52, 96 (2012).

    Article  Google Scholar 

  6. X. Liu and X. Gao, J. Clean. Prod. 129, 88 (2016).

    Article  Google Scholar 

  7. P. Li, Int. J. Hydrogen Energy 42, 9688 (2017).

    Article  Google Scholar 

  8. D.G. Ebling, A. Krumm, B. Pfeiffelmann, J. Gottschald, J. Bruchmann, A.C. Benim, M. Adam, R. Labs, R.R. Herbertz, and A. Stunz, J. Electron. Mater. 45, 3433 (2016).

    Article  Google Scholar 

  9. F. Meng, L. Chen, F. Sun, and B. Yang, Energy 66, 965 (2014).

    Article  Google Scholar 

  10. T. Kuroki, K. Kabeya, K. Makino, T. Kajihara, H. Kaibe, H. Hachiuma, H. Matsuno, and A. Fujibayashi, J. Electron. Mater. 43, 2405 (2014).

    Article  Google Scholar 

  11. M. Chen, L.A. Rosendahl, and T. Condra, Int. J. Heat Mass Transf. 54, 345 (2011).

    Article  Google Scholar 

  12. T. Fujisaka, H. Sui, and R.O. Suzuki, J. Electron. Mater. 42, 1688 (2013).

    Article  Google Scholar 

  13. X. Meng and R.O. Suzuki, Mater. Trans. 56, 1092 (2015).

    Article  Google Scholar 

  14. R.O. Suzuki, K.O. Ito, and S. Oki, J. Electron. Mater. 45, 1827 (2016).

    Article  Google Scholar 

  15. X. Meng, T. Fujisaka, and R.O. Suzuki, J. Electron. Mater. 43, 1509 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported by National Natural Science Foundation of China (No. 51576034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangning Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, B., Meng, X., Zhu, M. et al. Thermoelectric System Absorbing Waste Heat from a Steel Ladle. J. Electron. Mater. 47, 3238–3247 (2018). https://doi.org/10.1007/s11664-018-6073-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6073-4

Keywords

Navigation