Skip to main content

Local Electron Interaction with Point Defects in Sphalerite Zinc Selenide: Calculation from First Principles

Abstract

The present article deals with the description of electron scattering on the different types of point defects in zinc blende ZnSe on the basis of short-range principles. The electron interaction with polar and nonpolar optical phonons, piezoelectric and acoustic phonons, neutral and ionized impurities and static strain centers is considered. The electron transition probabilities and, respectively, the kinetic coefficients in zinc selenide, were calculated using the numerical eigenfunction and self-consistent potential obtained within the ab initio density functional theory. The latter were evaluated using the projector augmented waves formalism as implemented in the ABINIT software suite. We investigated ZnSe samples with defect concentration 4.7 × 1015–1.08 × 1017 cm−3 , then calculated temperature dependencies of electron mobility and Hall factors in the range of 20–400 K. It is shown that the theoretical curves obtained in the framework of short-range scattering models much better coincide with experimental data than the curves calculated on the basis of long-range scattering models.

References

  1. O.P. Malyk, Comput. Mater. Sci. 33, 153 (2005).

    Article  Google Scholar 

  2. O.P. Malyk, Phys. Status Solidi C 6, S86 (2009).

    Article  Google Scholar 

  3. O.P. Malyk, Diamond Relat. Mater. 23, 23 (2012).

    Article  Google Scholar 

  4. O.P. Malyk, Can. J. Phys. 92, 1372 (2014).

    Article  Google Scholar 

  5. O.P. Malyk and S.V. Syrotyuk, Comput. Mater. Sci. 139, 387 (2017).

    Article  Google Scholar 

  6. X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Cote, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D.R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukačević, A. Martin, C. Martins, M.J.T. Oliveira, S. Ponce, Y. Pouillon, T. Rangel, G.-M. Rignanese, A.H. Romero, B. Rousseau, O. Rubel, A.A. Shukri, M. Stankovski, M. Torrent, M.J. Van Setten, B. Van Troeye, M.J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, and J.W. Zwanziger, Comput. Phys. Commun. 205, 106 (2016).

    Article  Google Scholar 

  7. K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen, Phys. Rev. B 85, 115317 (2012).

    Article  Google Scholar 

  8. O. Restrepo, K. Varga, and S. Pantelides, Appl. Phys. Lett. 94, 212103 (2009).

    Article  Google Scholar 

  9. O.D. Restrepo, K.E. Krymowski, J. Goldberger, and W. Windl, New J. Phys. 16, 105009 (2014).

    Article  Google Scholar 

  10. X. Li, J.T. Mullen, Z. Jin, K.M. Borysenko, M. Buongiorno Nardelli, and K.W. Kim, Phys. Rev. B 87, 115418 (2013).

    Article  Google Scholar 

  11. W. Li, Phys. Rev. B 92, 075405 (2015).

    Article  Google Scholar 

  12. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  13. N.A.W. Holzwarth, A.R. Tackett, and G.E. Matthews, Comput. Phys. Commun. 135, 329 (2001).

    Article  Google Scholar 

  14. A.R. Tackett, N.A.W. Holzwarth, and G.E. Matthews, Comput. Phys. Commun. 135, 348 (2001).

    Article  Google Scholar 

  15. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  16. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  17. P. Novák, J. Kunes, L. Chaput, and W.E. Pickett, Phys. Status Solidi B 243, 563 (2006).

    Article  Google Scholar 

  18. C. de Boor, A Practical Guide to Splines (New York: Springer-Verlag, 1978), pp. 351–353.

    Book  Google Scholar 

  19. S.S. Devlin, Physics and Chemistry of II-VI Compounds, ed. M. Aven and J.S. Prener (Amsterdam: North Holland, 1967), p. 418.

    Google Scholar 

  20. V.L. Roth, Physics and Chemistry of II-VI Compounds, ed. M. Aven and J.S. Prener (Amsterdam: North Holland, 1967), p. 97.

    Google Scholar 

  21. D. Theis, Phys. Status Solidi B 79, 125 (1977).

    Article  Google Scholar 

  22. J. Baillou, J. Daunay, P. Bugnet, J. Daunay, C. Auzary, and R. Poindessault, J. Phys. Chem. Solids 41, 295 (1980).

    Article  Google Scholar 

  23. C. Hermann and C. Weissbuch, Phys. Rev. B 15, 823 (1977).

    Article  Google Scholar 

  24. W.H. Gust, J. Appl. Phys. 53, 4843 (1982).

    Article  Google Scholar 

  25. M. Cardona, J. Appl. Phys. 32, 2151 (1961).

    Article  Google Scholar 

  26. J.C. Irving and J. LaCombe, Can. J. Phys. 50, 2596 (1972).

    Article  Google Scholar 

  27. P.A. Miles, Appl. Opt. 16, 2891 (1977).

    Article  Google Scholar 

  28. G.L. House and H.G. Drickamer, J. Chem. Phys. 67, 3221 (1977).

    Article  Google Scholar 

  29. A. Hadni, J. Claudel, and P. Strimer, Phys. Status Solidi 26, 241 (1968).

    Article  Google Scholar 

  30. V.I. Kuskov, A.P. Rusakov, and A.M. Mentser, Sov. Phys.-Sol. State 14, 1881 (1972).

    Google Scholar 

  31. D. Berlincourt, H. Jaffe, and L.R. Shiozawa, Phys. Rev. 129, 1009 (1963).

    Article  Google Scholar 

  32. O.P. Malyk, J. Alloys Compd. 371, 146 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Malyk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malyk, O.P., Syrotyuk, S.V. Local Electron Interaction with Point Defects in Sphalerite Zinc Selenide: Calculation from First Principles. J. Electron. Mater. 47, 4212–4218 (2018). https://doi.org/10.1007/s11664-018-6068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6068-1

Keywords

  • Electron transport
  • point defects
  • DFT wavefunction