Skip to main content
Log in

The Thermionic Vacuum Arc Method for Rapid Deposition of Cu/CuO/Cu2O Thin Film

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Copper oxide (CuOx) thin film has been deposited on glass substrate using the thermionic vacuum arc (TVA) method. The TVA system works in high-vacuum condition. The microstructural, surface, and optical properties were investigated. Reflection planes corresponding to Cu2O, CuO, and Cu crystal networks were detected in the x-ray diffraction (XRD) pattern. According to the XRD results, the deposited thin film was in polycrystalline form. The grain size, Miller indices, dislocation density, and microstrain were calculated. The crystalline size obtained from the CuO reflections was approximately 20 nm. The average roughness of the deposited film was measured to be 1.8 nm. The height distribution function of the grain size on the deposited surface was determined, revealing a mean grain height of 11 nm. The deposited film exhibited high transparency in the ultraviolet–visible (UV–Vis) spectroscopic region. The refractive index of the film was measured to be 2.20 at 632 nm. The optical bandgap and real part of the dielectric constant were found to be 1.5 eV and 4.84, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Al-Ghamdi, M. Khedr, M.S. Ansari, P. Hasan, M.S. Abdel-wahab, and A. Farghali, Physica E 81, 83 (2016).

    Article  Google Scholar 

  2. J.S.K. Arockiasamy and J. Irudayaraj, Ceram. Int. 42, 6198 (2016).

    Article  Google Scholar 

  3. S.-L. Cheng and M.-F. Chen, Nanoscale Res. Lett. 7, 119 (2012).

    Article  Google Scholar 

  4. M. Dahrul and H. Alatas, Procedia Environ. Sci. 33, 661 (2016).

    Article  Google Scholar 

  5. L. Debbichi, M. Marco de Lucas, J. Pierson, and P. Kruger, J. Phys. Chem. C 116, 10232 (2012).

    Article  Google Scholar 

  6. A.S. Ethiraj and D.J. Kang, Nanoscale Res. Lett. 7, 70 (2012).

    Article  Google Scholar 

  7. D. Jundale, P. Joshi, S. Sen, and V. Patil, J. Mater. Sci. Mater. Electron. 23, 1492 (2012).

    Article  Google Scholar 

  8. S. Karthick Kumar, S. Murugesan, S. Suresh, and S. Paul Raj, J. Sol. Energy 94, 299 (2013).

    Article  Google Scholar 

  9. H.R. Kim, A. Razzaq, C.A. Grimes, and S.-I. In, J. CO2 Util. 20, 91 (2017).

    Article  Google Scholar 

  10. F. Koffyberg and F. Benko, J. Appl. Phys. 53, 1173 (1982).

    Article  Google Scholar 

  11. Ş. Korkmaz, B. Geçici, S.D. Korkmaz, R. Mohammadigharehbagh, S. Pat, S. Özen, V. Şenay, and H.H. Yudar, Vacuum 131, 142 (2016).

    Article  Google Scholar 

  12. K. Mageshwari and R. Sathyamoorthy, Mater. Sci. Semicond. Process. 16, 337 (2013).

    Article  Google Scholar 

  13. A. Othonos and M. Zervos, Nanoscale Res. Lett. 6, 622 (2011).

    Article  Google Scholar 

  14. A. Ogwu, T. Darma, and E. Bouquerel, J. Achiev. Mater. Manuf. Eng. 24, 172 (2007).

    Google Scholar 

  15. J. Pierson, A. Thobor-Keck, and A. Billard, Appl. Surf. Sci. 210, 359 (2003).

    Article  Google Scholar 

  16. C. Surdu-Bob, R. Vladoiu, M. Badulescu, and G. Musa, Diamond Relat. Mater. 17, 1625 (2008).

    Article  Google Scholar 

  17. C. Surdu-Bob, I. Mustata, and C. Iacob, J. Optoelectron. Adv. Mater. 9, 2932 (2007).

    Google Scholar 

  18. H. Ehrich, J. Schuhmann, G. Musa, A. Popescu, and I. Mustata, Thin Solid Films 333, 95 (1998).

    Article  Google Scholar 

  19. M. Özkan, N. Ekem, M. Balbag, and S. Pat, Proc. IME J. Mater. Des. Appl. 226, 103 (2012).

    Google Scholar 

  20. S. Özen, V. Şenay, S. Pat, and Ş. Korkmaz, Scanning 38, 14 (2015).

    Article  Google Scholar 

  21. S.-M. Park, A. Razzaq, Y.H. Park, S. Sorcar, Y. Park, C.A. Grimes, and S.-I. In, ACS Omega 1, 868 (2016).

    Article  Google Scholar 

  22. A. El Sayed, S. El-Gamal, W. Morsi, and G. Mohammed, J. Mater. Sci. 50, 4717 (2015).

    Article  Google Scholar 

  23. K.I. Mohammed, A.S. Jasim, and S.N. Rashid, Int. J. Phys. 4, 59 (2016).

    Google Scholar 

Download references

Acknowledgments

This research activity was supported by ESOGU Scientific Research Committee Grant No. 201619053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caner Musaoğlu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musaoğlu, C., Pat, S., Mohammadigharehbagh, R. et al. The Thermionic Vacuum Arc Method for Rapid Deposition of Cu/CuO/Cu2O Thin Film. J. Electron. Mater. 48, 2272–2277 (2019). https://doi.org/10.1007/s11664-018-06906-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06906-9

Keywords

Navigation