Skip to main content

Advertisement

Log in

Metal–Insulator–Metal Diodes: A Potential High Frequency Rectifier for Rectenna Application

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Metal–insulator–metal (MIM) diodes are among the most promising candidates for applications in the high frequency regime. Owing to the tunneling dominant current conduction mechanism, they facilitate femtosecond fast switching time, which has drawn great research attention for many potential high-speed applications and especially as a rectifier in rectenna based energy harvesting. Since its advent in the early 1960s, a lot of development has occurred in various aspects of design, fabrication and characterization of MIM diodes for rectenna applications. In this work, a detailed study on MIM diodes is conducted emphasizing the advancements in design and fabrication of MIM diodes and future challenges from the point of view of their application in rectennas. In addition, the fabrication and characterization of a graphene (Gr) based Al/AlOx/Gr MIM diode are also presented herein, exhibiting highly asymmetric current–voltage characteristics with large current density and a good degree of nonlinearity. An asymmetricity exceeding 2500 and the corresponding current density up to ∼ 1 A/cm2 were obtained at a voltage bias of 1 V. The peak nonlinearity was ∼ 3.8, whereas the zero bias resistance was as low as ∼ 600 Ω. These performance metrics are highly desirable for rectification operation and hence the as-fabricated Al/AlOx/Gr MIM diode holds great promise for its potential use as a rectifying element in rectennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Simmons, J. Phys. D Appl. Phys. 4, 5 (1971).

    Article  Google Scholar 

  2. J.C. Fisher and I. Giaever, J. Appl. Phys. 32, 2 (1961). https://doi.org/10.1063/1.1735973.

    Article  Google Scholar 

  3. S. Keith, Champlin Gadi Eisenstein 26, 1 (1978). https://doi.org/10.1109/TMTT.1978.1129302.

    Article  Google Scholar 

  4. Rainer Waser and Masakazu Aono, Nat. Mater. 6, 11 (2007). https://doi.org/10.1038/nmat2023.

    Article  CAS  Google Scholar 

  5. M. Heiblum, Solid State Electron. 24, 4 (1981). https://doi.org/10.1016/0038-1101(81)90029-0.

    Article  Google Scholar 

  6. S.K. Masalmeh, H.K.E. Stadermann, and J. Korving, Physica B 218, 1 (1996). https://doi.org/10.1016/0921-4526(95)00558-7.

    Article  Google Scholar 

  7. S. Krishnan, S. Bhansali, E. Stefanakos, and D.Y. Goswami, Procedia Chem. 1, 1 (2009). https://doi.org/10.1016/j.proche.2009.07.102.

    Article  CAS  Google Scholar 

  8. T.K. Gustafson, R.V. Schmidt, and J.R. Perucca, Appl. Phys. Lett. 24, 12 (1974). https://doi.org/10.1063/1.1655078.

    Article  Google Scholar 

  9. R.L. Baily, J. Eng. Power 94, 2 (1972). https://doi.org/10.1115/1.3445660.

    Article  Google Scholar 

  10. W.C. Brown, IEEE Trans. Microwave Theory Technol. 32, 9 (1984).

    Article  Google Scholar 

  11. D.K. Kotter, S.D. Novack, W.D. Slafer, and P. Pinhero. In ASME 2008 2nd International Conference on Energy Sustainability collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences (American Society of Mechanical Engineers, 2008), pp. 409–415. https://doi.org/10.1115/es2008-54016.

  12. E. Donchev, J.S. Pang, P.M. Gammon, A. Centeno, F. Xie, P.K. Petrov, J.D. Breeze, M.P. Ryan, D.J. Riley, and N.M. Alford, MRS Energy Sustain. (2014). https://doi.org/10.1557/mre.2014.6.

    Article  Google Scholar 

  13. N.M. Miskovsky, P.H. Cutler, A. Mayer, B.L. Weiss, B. Willis, T.E. Sullivan, and P.B. Lerner, J. Nanotechnol. (2012). https://doi.org/10.1155/2012/512379.

    Article  Google Scholar 

  14. S. Shriwastava, K. Bhatt, S. Sharma, S. Kumar, and C.C. Tripathi, in International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 83–88 (2017). https://doi.org/10.1109/icicct.2017.7975164.

  15. L. Mescia and A. Massaro, Adv. Mater. Sci. Eng., 2014, Article ID 252879 (2014). https://doi.org/10.1155/2014/252879.

  16. Simon Hemour and Ke Wu, Proc. IEEE 102, 11 (2014). https://doi.org/10.1109/JPROC.2014.2358691.

    Article  Google Scholar 

  17. R.H. Fowler and L. Nordheim, Proc. R. Soc. Lond. Ser. A 119, 781 (1928). https://doi.org/10.1098/rspa.1928.0091.

    Article  Google Scholar 

  18. B.J. Eliasson, MetalInsulatorMetal Diodes for Solar Energy Conversion. Ph.D. Thesis, University of Colorado at Boulder, Boulder (2001).

  19. J.G. Simmons, J. Appl. Phys. 34, 2581 (1963). https://doi.org/10.1063/1.1729774.

    Article  Google Scholar 

  20. A. Sanchez, C.F. Davis Jr, K.C. Liu, and A. Javan, J. Appl. Phys. 49, 10 (1978). https://doi.org/10.1063/1.324426.

    Article  Google Scholar 

  21. J.W. Dees, Microwave J. 9, 48 (1966).

    Google Scholar 

  22. B. Twu and S.E. Schwarz, Appl. Phys. Lett. 25, 10 (1974). https://doi.org/10.1063/1.1655325.

    Article  Google Scholar 

  23. R.E. Drullinger, K.M. Evenson, D.A. Jennings, F.R. Petersen, J.C. Bergquist, and L. Burkins, Appl. Phys. Lett. 42, 2 (1983). https://doi.org/10.1063/1.93852.

    Article  Google Scholar 

  24. S.I. Green, J. Appl. Phys. 42, 3 (1971). https://doi.org/10.1063/1.1660161.

    Article  Google Scholar 

  25. H.D. Riccius, Appl. Phys. Lett. 27, 232 (1975). https://doi.org/10.1063/1.88440.

    Article  Google Scholar 

  26. J.G. Small, G.M. Elchinger, A. Javan, A. Sanchez, F.J. Bachner, and D.L. Smythe, Appl. Phys. Lett. 24, 6 (1974). https://doi.org/10.1063/1.1655181.

    Article  Google Scholar 

  27. S.W.M. Heiblum, J. Whinnery, and T. Gustafson, IEEE J. Quantum Electron. 14, 3 (1978). https://doi.org/10.1109/JQE.1978.1069765.

    Article  Google Scholar 

  28. A. Sommerfeld and H. Bethe, Handbuch der Physik, Vol. 24/2, ed. H. Geiger and K. Scheel (Berlin: Julius Springer, 1933), p. 450.

    Google Scholar 

  29. R. Holm, J. Appl. Phys. 22, 569 (1951). https://doi.org/10.1063/1.1700008.

    Article  Google Scholar 

  30. J.G. Simmons, J. Appl. Phys. 34, 6 (1963). https://doi.org/10.1063/1.1702682.

    Article  Google Scholar 

  31. G. Chapline Michael and X. Wang Shan, J. Appl. Phys. 101, 8 (2007). https://doi.org/10.1063/1.2714784.

    Article  CAS  Google Scholar 

  32. Sachit Grover and Garret Moddel, Solid State Electron. 67, 1 (2012). https://doi.org/10.1016/j.sse.2011.09.004.

    Article  CAS  Google Scholar 

  33. I.E. Hashem, N.H. Rafat, and E.A. Soliman, IEEE J. Quantum Electron. 49, 1 (2013). https://doi.org/10.1109/JQE.2012.2228166.

    Article  CAS  Google Scholar 

  34. C.S. Lent and D.J. Kirkner, J. Appl. Phys. 67, 10 (1990). https://doi.org/10.1063/1.345156.

    Article  Google Scholar 

  35. S. Datta, Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press, 2005).

    Book  Google Scholar 

  36. M.R. Abdel-Rahman, M. Syaryadhi, and N. Debbar, Electron. Lett. 49, 5 (2013). https://doi.org/10.1049/el.2012.4222.

    Article  CAS  Google Scholar 

  37. E.W. Cowell III, S.W. Muir, D.A. Keszler, and J.F. Wager, J. Appl. Phys. 114, 21 (2013). https://doi.org/10.1063/1.4839695.

    Article  CAS  Google Scholar 

  38. M.F. Zia, M.R. Abdel-Rahman, N.F. Al-Khalli, and N.A. Debbar, Acta Phys. Pol., A 127, 4 (2015). https://doi.org/10.12693/APhysPolA.127.1289.

    Article  CAS  Google Scholar 

  39. J.G. Simmons, J. Appl. Phys. 35, 8 (1964).

    Google Scholar 

  40. T. O’Regan, M. Chin, C. Tan, and A. Birdwell, ARL-TN -0464 (2011).

  41. M.L. Chin, P. Periasamy, T.P. O’Regan, M. Amani, C. Tan, R.P. O’Hayre, J.J. Berry, R.M. Osgood III, P.A. Parilla, D.S. Ginley, and M. Dubey, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 31, 5 (2013). https://doi.org/10.1116/1.4818313.

    Article  CAS  Google Scholar 

  42. F.-C. Chiu, Adv. Mater. Sci. Eng. (2014). https://doi.org/10.1155/2014/578168.

    Article  Google Scholar 

  43. S.K. Kim, S.W. Lee, J.H. Han, B. Lee, S. Han, and C.S. Hwang, Adv. Func. Mater. 20, 18 (2010). https://doi.org/10.1002/adfm.201000599.

    Article  CAS  Google Scholar 

  44. S. Shriwastava, K. Bhatt, S.K. Sandeep, and C.C. Tripathi, in 2017 2nd International Conference for Convergence in Technology (I2CT), India, pp. 738–741 (2017). https://doi.org/10.1109/i2ct.2017.8226226.

  45. K. Choi, Novel Tunneling Diodes for a High Performance Infrared Rectenna. University of Maryland, College Park, Ph.D. Thesis (2011).

  46. J.H. Shin, J. Im, J.-W. Choi, H.S. Kim, J.I. Sohn, S.N. Cha, and J.E. Jang, Carbon 102, 172 (2016).

    Article  CAS  Google Scholar 

  47. A.J. Bergren, K.D. Harris, F. Deng, and R.L. McCreery, J. Phys.: Condens. Matter (2008). https://doi.org/10.1088/0953-8984/20/37/374117.

    Article  Google Scholar 

  48. R. Kumar, H. Yan, R.L. McCreery, and A.J. Bergren, Phys. Chem. Chem. Phys. 13, 14318 (2011).

    Article  CAS  Google Scholar 

  49. E. Donchev, Thin Film Diode Structures for Advanced Energy Applications, PhD Thesis, University of South Florida (2015).

  50. P. Dudek, R. Schmidt, M. Lukosius, G. Lupina, Ch Wenger, A. Abrutis, M. Albert, K. Xu, and A. Devi, Thin Solid Films 519, 17 (2011). https://doi.org/10.1016/j.tsf.2010.12.195.

    Article  CAS  Google Scholar 

  51. R. Urcuyo, D.L. Duong, H.Y. Jeong, M. Burghard, and K. Kern, Adv. Electron. Mater. 2, 9 (2016). https://doi.org/10.1002/aelm.201600223.

    Article  CAS  Google Scholar 

  52. M. Shaygan, Z. Wang, M.S. Elsayed, M. Otto, G. Iannaccone, A.H. Ghareeb, G. Fiori, R. Negra, and D. Neumaier, Nanoscale (2017). https://doi.org/10.1039/c7nr02793a.

    Article  Google Scholar 

  53. S. Hwan Lee, M. Sup Choi, J. Lee, C. Ho Ra, X. Liu, E. Hwang, J. Hee Choi, J. Zhong, W. Chen, and W. Jong Yoo, Appl. Phys. Lett. 104, 053103 (2014). https://doi.org/10.1063/1.4863840.

    Article  CAS  Google Scholar 

  54. P. Periasamy, J.J. Berry, A.A. Dameron, J.D. Bergeson, D.S. Ginley, R.P. O’Hayre, and P.A. Parilla, Adv. Mater. 23, 3080 (2011). https://doi.org/10.1002/adma.201101115.

    Article  CAS  Google Scholar 

  55. K. Gloos, P.J. Koppinen, and J.P. Pekola, J. Phys.: Condens. Matter 15, 1733 (2003).

    CAS  Google Scholar 

  56. J. Kadlec and K.H. Gundlach, Solid State Commun. 16, 5 (1975). https://doi.org/10.1016/0038-1098(75)90438-X.

    Article  Google Scholar 

  57. D.A. Neamen, Semiconductor Physics and Devices: Basic Principles. Richard D. Irwin Inc. ISBN 0-256-0B405-X, 1992, Homewood IL 60430 (1992).

  58. F. Aydinoglu, M. Alhazmi, B. Cui, O.M. Ramahi, M. Irannejad, A. Brzezinski, and M. Yavuz, Austin J Nanomed. Nanotechnol. 1, 1 (2013).

    Google Scholar 

  59. B.J. Eliasson and G. Moddel, Metal-Oxide Electron Tunneling Device for Solar Energy Conversion. U.S. Patent 6,534,784 (2003).

  60. B. Eliasson and G. Moddel, High Speed Electron Tunneling Device and Applications. US Patent 6,756,649 (2004).

  61. P. Maraghechi, A. Foroughi-Abari, K. Cadien, and A.Y. Elezzabi, Appl. Phys. Lett. 100, 113503 (2012).

    Article  CAS  Google Scholar 

  62. S. Grover, Diodes for Optical Rectenna. Ph.D. Thesis, University of Colorado, Boulder (2011).

  63. B. Hegyi, A. Csurgay, and W. Porod, J. Comput. Electron. 6, 1 (2007). https://doi.org/10.1007/s10825-006-0083-9.

    Article  CAS  Google Scholar 

  64. O.A. Ajayi, DC and RF Characterization of High Frequency ALD Enhanced Nanostructured MetalInsulator Metal Diodes, Ph.D. thesis, University of South Florida (2014).

  65. A.D. Weerakkody, N. Sedghi, I.Z. Mitrovic, H. van Zalinge, I. Nemr-Noureddine, S. Hall, J.S. Wrench, P.R. Chalker, L.J. Phillips, R. Treharne, and K. Durose, Microelectron. Eng. (2015). https://doi.org/10.1016/j.mee.2015.04.110.

    Article  Google Scholar 

  66. S.B. Herner, A.D. Weerakkody, A. Belkadi, and G. Moddel, Appl. Phys. Lett. 110, 22 (2017). https://doi.org/10.1063/1.4984278.

    Article  CAS  Google Scholar 

  67. I. Nemr Noureddine, N. Sedghi, I.Z. Mitrovic, and S. Hall, J. Vac. Sci. Technol., B 35, 1 (2017). https://doi.org/10.1116/1.4974219.

    Article  CAS  Google Scholar 

  68. N. Alimardani and J.F. Conley Jr., in Proceedings of SPIE, vol. 8824 (2013). https://doi.org/10.1117/12.2024750.

  69. N. Alimardani and J.F. Conley Jr, Appl. Phys. Lett. 105, 8 (2014). https://doi.org/10.1063/1.4893735.

    Article  CAS  Google Scholar 

  70. P. Maraghechi, A. Foroughi-Abari, K. Cadien, and A.Y. Elezzabi, Appl. Phys. Lett. 99, 25 (2011). https://doi.org/10.1063/1.3671071.

    Article  CAS  Google Scholar 

  71. D. Sekar, T. Kumar, P. Rabkin, and X. Costa, US Patent App. 13/787, 505 (2013).

  72. I.Z. Mitrovic, A.D. Weerakkody, N. Sedghi, S. Hall, J.F. Ralph, J.S. Wrench, P.R. Chalker, Z. Luo, and S. Beeby, ECS Trans. 72, 2 (2016). https://doi.org/10.1149/07202.0287ecst.

    Article  CAS  Google Scholar 

  73. W. Guo, Evaluation of e-Beam SiO 2 for MIM Application. M.S. Thesis, University of Alberta (2010).

  74. S. Krishnan, E. Stefanakos, and S. Bhansali, Thin Solid Films 516, 8 (2008). https://doi.org/10.1016/j.tsf.2007.08.067.

    Article  CAS  Google Scholar 

  75. P. Esfandiari, G. Bernstein, P. Fay, W. Porod, B. Rakos, A. Zarandy, B. Berland, L. Boloni, G. Boreman, B. Lail, and B. Monacelli, Infrared Technology and Applications, vol. XXXI (SPIE, Orlando, 2005).

  76. N. Alimardani, S.W. King, B.L. French, C. Tan, B.P. Lampert, and J.F. Conley Jr, J. Appl. Phys. 116, 024508 (2014).

    Article  CAS  Google Scholar 

  77. A. Singh, R. Ratnadurai, R. Kumar, S. Krishnan, Y. Emirov, and S. Bhansali, Appl. Surf. Sci. 334, 1 (2015). https://doi.org/10.1016/japsusc201409160.

    Article  Google Scholar 

  78. K. Choi, G. Ryu, F. Yesilkoy, A. Chryssis, N. Goldsman, M. Dagenais, and M. Peckerar, J. Vac. Sci. Technol., B 28, 6 (2010). https://doi.org/10.1116/1.3501350.

    Article  CAS  Google Scholar 

  79. P.C. Hobbs, R.B. Laibowitz, and F.R. Libsch, Appl. Opt. 44, 32 (2005). https://doi.org/10.1364/ao.44.006813.

    Article  Google Scholar 

  80. P. Periasamy, H.L. Guthrey, A.I. Abdulagatov, P.F. Ndione, J.J. Berry, D.S. Ginley, S.M. George, P.A. Parilla, and R.P. O’Hayre, Adv. Mater. 25, 9 (2013). https://doi.org/10.1002/adma.201203075.

    Article  CAS  Google Scholar 

  81. K. Mistry, M. Yavuz, and K.P. Musselman, J. Appl. Phys. 121, 18 (2017). https://doi.org/10.1063/1.4983256.

    Article  CAS  Google Scholar 

  82. M. Bareiß, D. Kalblein, C. Jirauschek, A. Exner, I. Pavlichenko, B. Lotsch, U. Zschieschang, H. Klauk, G. Scarpa, B. Fabel, W. Porod, and P. Lugli, Appl. Phys. Lett. 101, 8 (2012). https://doi.org/10.1063/1.4745651.

    Article  CAS  Google Scholar 

  83. Z. Thacker and P.J. Pinhero, IEEE Trans. Terahertz Sci. Technol. 6, 414 (2016). https://doi.org/10.1109/tthz.2016.2541684.

    Article  CAS  Google Scholar 

  84. Y. Rawal, S. Ganguly, and S.M. Baghini, Act. Passive Electron. Compon. (2012). https://doi.org/10.1155/2012/694105.

    Article  Google Scholar 

  85. N. Alimardani, E.W. Cowell III, J.F. Wager, and J.F. Conley Jr, J. Vac. Sci. Technol. A: Vac. Surf. Films 30, 1 (2012). https://doi.org/10.1116/1.3658380.

    Article  CAS  Google Scholar 

  86. I.-T. Wu, N. Kislov, and J. Wang, Nanosci. Nanotechnol. Lett. 2, 144 (2010).

    Article  CAS  Google Scholar 

  87. I. Wilke, W. Herrmann, and F.K. Kneubühl, Appl. Phys. B 58, 2 (1994). https://doi.org/10.1007/BF01082341.

    Article  Google Scholar 

  88. C. Fumeaux, W. Herrmann, F.K. Kneubuhl, and H. Rothuizen, Infrared Phys. Technol. 39, 3 (1998). https://doi.org/10.1016/S1350-4495(98)00004-8.

    Article  Google Scholar 

  89. J.A. Bean, B. Tiwari, G.H. Bernstein, P. Fay, and W. Porod, J. Vac. Sci. Technol., B 27, 1 (2009). https://doi.org/10.1116/1.3039684.

    Article  CAS  Google Scholar 

  90. S. Krishnan, H. La Rosa, E. Stefanakos, S. Bhansali, and K. Buckle, Sens. Actuators, A 142, 1 (2008). https://doi.org/10.1016/j.sna.2007.04.021.

    Article  CAS  Google Scholar 

  91. M.N. Gadalla, M. Abdel-Rahman, and A. Shamim, Sci. Rep. 4, 4270 (2014). https://doi.org/10.1038/srep04270.

    Article  CAS  Google Scholar 

  92. M.R. Abdel-Rahman, F.J. Gonzalez, and G.D. Boreman, Electron. Lett. 40, 2 (2004). https://doi.org/10.1049/el:20040105.

    Article  Google Scholar 

  93. F. Yesilkoy, IR Detection and Energy Harvesting Using Antenna Coupled MIM Tunnel Diodes. Ph.D. thesis, University of Maryland College Park (2012).

  94. C. Zhuang, L. Wang, Z. Dai, and D. Yang, ECS Solid State Lett. 4, 5 (2015). https://doi.org/10.1149/2.0021505ssl.

    Article  CAS  Google Scholar 

  95. A. Taurino, I. Farella, A. Cola, M. Lomascolo, F. Quaranta, and M. Catalano, J. Vac. Sci. Technol., B 31, 4 (2013). https://doi.org/10.1116/1.4811824.

    Article  CAS  Google Scholar 

  96. M. Bareiß, F. Ante, D. Kalblein, G. Jegert, C. Jirauschek, G. Scarpa, B. Fabel, E.M. Nelson, G. Timp, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, ACS Nano 6, 3 (2012). https://doi.org/10.1021/nn3004058.

    Article  CAS  Google Scholar 

  97. S. Zhang, L. Wang, X. Chen, D. Li, L. Chen, and D. Yang, ECS Solid State Lett. 2, 1 (2013). https://doi.org/10.1149/2.001301ssl.

    Article  CAS  Google Scholar 

  98. R. Ratnadurai, S. Krishnan, E. Stefanakos, D.Y. Goswami, and S. Bhansali, in AIP Conference Proceedings, vol. 1313, p. 1 (2010). https://doi.org/10.1063/1.3530561.

  99. A.A. Khan, G. Jayaswal, F.A. Gahaffar, and A. Shamim, Microelectron. Eng. (2017). https://doi.org/10.1016/j.mee.2017.07.003.

    Article  Google Scholar 

  100. E.W. Cowell III, J. Wager, B. Gibbons, and D. Keszler, US Patent 8,436,337 (2013).

  101. S. Krishnan, Y. Emirov, S. Bhansali, E. Stefanakos, and Y. Goswami, Thin Solid Films 518, 12 (2010). https://doi.org/10.1016/j.tsf.2009.10.021.

    Article  CAS  Google Scholar 

  102. B. Tiwari, J.A. Bean, G. Szakmány, G.H. Bernstein, P. Fay, and W. Porod, J. Vac. Sci. Technol., B 27, 5 (2009). https://doi.org/10.1116/1.3204979.

    Article  CAS  Google Scholar 

  103. N. Debbar, M. Syaryadhi, and M. Abdel-Rahman, Eur. Phys. J. Appl. Phys. 68, 3 (2014). https://doi.org/10.1051/epjap/2014130489.

    Article  CAS  Google Scholar 

  104. J. Shirakashi, K. Matsumoto, N. Miura, and M. Konagai, Jpn. J. Appl. Phys. 36, 8B (1997).

    Google Scholar 

  105. E.G. Arsoy, M. Inac, A. Shafique, M. Ozcan, and Y. Gurbuz, Infrared Technol. Appl. XLII, 9819 (2016). https://doi.org/10.1117/12.2224748.

    Article  Google Scholar 

  106. N. Alimardani, E.W. Cowell III, J.F. Wager, and J.F. Conley, Jr. 221st ECS Meeting (2012).

  107. F.M. Alhazmi, F. Aydinoglu, B. Cui, O.M. Ramahi, M. Irannejad, A. Brzezinski, and M. Yavuz, Austin J Nanomed. Nanotechnol. 2, 2 (2014).

    Google Scholar 

  108. N. Alimardani, J.M. McGlone, J.F. Wager, and J.F. Conley Jr, J. Vac. Sci. Technol., A 32, 01A122 (2013). https://doi.org/10.1116/1.4843555.

    Article  CAS  Google Scholar 

  109. I. Azad, M.K. Ram, D.Y. Goswami, and E. Stefanakos, Langmuir (2016). https://doi.org/10.1021/acs.langmuir.6b02182.

    Article  Google Scholar 

  110. S. Krishnan, Thin Film MetalInsulatorMetal Tunnel Junctions for Millimeter Wave Detection. Ph.D. Thesis, University of South Florida (2004).

  111. S. Sharma, Design, Fabrication and Characterization of MIM Diodes and Frequency Selective Thermal Emitters for Solar Energy Harvesting and Detection Devices. Ph.D. Thesis, University of South Florida, (2015).

  112. M. Celestin, S. Krishnan, D.Y. Goswami, E. Stefanakos, and S. Bhansali, Procedia Eng. 1, 1 (2010). https://doi.org/10.1016/j.proeng.2010.09.291.

    Article  CAS  Google Scholar 

  113. D. Etor, L.E. Dodd, D. Wood, and C. Balocco, Appl. Phys. Lett. 109, 19 (2016). https://doi.org/10.1063/1.4967190.

    Article  CAS  Google Scholar 

  114. S. Shriwastava, K. Bhatt, S. Sharma, S. Kumar, and C.C. Tripathi, Int. J. Nanoparticles 10, 207 (2018). https://doi.org/10.1504/ijnp.2018.094046.

    Article  Google Scholar 

  115. P. Periasamy, M.S. Bradley, P.A. Parilla, J.J. Berry, D.S. Ginley, R.P. O’Hayre, and C.E. Packard, J. Mater. Res. 28, 14 (2013). https://doi.org/10.1557/jmr.2013.171.

    Article  CAS  Google Scholar 

  116. A.A. Khan, Investigation of MIM Diodes for RF Applications, M.S. Thesis, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia (2015).

  117. B. Berland, Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, (NREL, Golden, CO), p. 16 (2011).

Download references

Acknowledgments

The first author, Shilpi Shriwastava, gratefully acknowledges University Grants Commission (UGC), India (4062/(NET-JUNE 2013)) for providing financial assistance through JRF and SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpi Shriwastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shriwastava, S., Tripathi, C.C. Metal–Insulator–Metal Diodes: A Potential High Frequency Rectifier for Rectenna Application. J. Electron. Mater. 48, 2635–2652 (2019). https://doi.org/10.1007/s11664-018-06887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06887-9

Keywords

Navigation