Skip to main content

Sintering Characteristics and Microwave Dielectric Properties of Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6 Ceramic Doped with LiF for LTCC Applications

Abstract

In the current study, LiF as a sintering agent was chosen to achieve the low temperature sintering of Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6 (LMTS) ceramics. LMTS ceramics with 1–4 wt.% LiF additions were prepared by a solid-state reaction. The influence of LiF-doping on x-ray diffraction patterns, apparent density, micro-morphology and microwave dielectric properties were discussed in depth. With different LiF additions, LMTS ceramics show a rock salt structured pure phase. A small amount of LiF addition can significantly promote sintering due to the liquid-phase sintering. Compact samples (> 95% of theoretical density) can be obtained at 950°C for LMTS with 2–4 wt.% LiF addition ceramics. Particularly, LMTS with 4 wt.% LiF additional ceramic exhibited optimal microwave dielectric properties at 950°C (εr = 14.9, Q × f=68132 GHz and τf = − 39.24 ppm/°C). Moreover, LMTS ceramics possessed excellent chemical compatibility with silver, implying that the LMTS-LiF ceramic is a potential candidate for low temperature co-fired ceramic (LTCC).

References

  1. G. Wang, H.W. Zhang, C. Liu, H. Su, L.J. Jia, J. Li, X. Huang, and G.W. Gan, J. Electron. Mater. 47, 4672 (2018).

    Article  Google Scholar 

  2. Z.X. Wang, C.L. Yuan, B.H. Zhu, Q. Feng, F. Liu, L. Miao, C.R. Zhou, and G.H. Chen, J. Mater. Sci.: Mater. Electron. 29, 1817 (2018).

    Google Scholar 

  3. R.Z. Zuo, Y.D. Xu, M. Shi, W.Q. Li, and L.G. He, J. Eur. Ceram. Soc. 38, 4677 (2018).

    Article  Google Scholar 

  4. Y. Wang, S.B. Zhang, T.L. Tang, W.S. Xia, and L.W. Shi, Mater. Lett. 231, 1 (2018).

    Article  Google Scholar 

  5. F. Liu, J.J. Qu, C.L. Yuan, and G.H. Chen, Mater. Res. Bull. 98, 8 (2018).

    Article  Google Scholar 

  6. W.S. Xia, F.Y. Yang, G.Y. Zhang, K. Han, and D.C. Guo, J. Alloys Compd. 656, 470 (2016).

    Article  Google Scholar 

  7. W.S. Xia, F. Jin, M. Wang, X. Wang, G.Y. Zhang, and L.W. Shi, J. Mater. Sci.: Mater. Electron. 27, 1100 (2016).

    Google Scholar 

  8. W.S. Xia, G.Y. Zhang, L.W. Shi, and M.M. Zhang, Mater. Lett. 124, 64 (2014).

    Article  Google Scholar 

  9. Y. Wang, L.Y. Zhang, S.B. Zhang, W.S. Xia, and L.W. Shi, Mater. Lett. 219, 233 (2018).

    Article  Google Scholar 

  10. W.S. Xia, L.Y. Zhang, Y. Wang, J.T. Zhang, R.R. Feng, and L.W. Shi, J. Mater. Sci.: Mater. Electron. 28, 18437 (2017).

    Google Scholar 

  11. H. Yang, S.R. Zhang, Z.X. Fang, H.T. Chen, Z. Xiong, and B. Tang, J. Mater. Sci.: Mater. Electron. 29, 4533 (2018).

    Google Scholar 

  12. Z.Z. Weng, Z.Y. Hana, F. Xiao, H. Xue, and D.L. Peng, Ceram. Int. 44, 14145 (2018).

    Article  Google Scholar 

  13. Z.F. Fu, P. Liu, J.L. Ma, X.G. Zhao, and H.W. Zhang, J. Eur. Ceram. Soc. 36, 625 (2016).

    Article  Google Scholar 

  14. H.T. Wu and E.S. Kim, RSC Adv. 6, 47443 (2016).

    Article  Google Scholar 

  15. H.F. Zhou, X.H. Tan, J. Huang, N. Wang, G.C. Fan, and X.L. Chen, J. Alloys Compd. 696, 1255 (2017).

    Article  Google Scholar 

  16. P. Zhang, H. Xie, Y.G. Zhao, and M. Xiao, J. Alloys Compd. 689, 246 (2016).

    Article  Google Scholar 

  17. Z.X. Fang, B. Tang, F. Si, and S.R. Zhang, Ceram. Int. 43, 1682 (2017).

    Article  Google Scholar 

  18. Z.F. Fu, P. Liu, J.L. Ma, X.M. Chen, and H.W. Zhang, Mater. Lett. 164, 436 (2016).

    Article  Google Scholar 

  19. Z.F. Fu, J.L. Ma, X.S. Zhang, and B. Wang, Ferroelectrics 510, 50 (2017).

    Article  Google Scholar 

  20. Z.F. Fu, J.L. Ma, P. Liu, and Y. Liu, Mater. Chem. Phys. 200, 264 (2017).

    Article  Google Scholar 

  21. J.L. Ma, Z.F. Fu, P. Liu, L.P. Zhao, and B.C. Guo, J. Alloys Compd. 709, 299 (2017).

    Article  Google Scholar 

  22. H.L. Pan, L. Cheng, and H.T. Wu, Ceram. Int. 43, 15018 (2017).

    Article  Google Scholar 

  23. H.L. Pan, Y.W. Zhang, and H.T. Wu, Ceram. Int. 44, 3464 (2018).

    Article  Google Scholar 

  24. X.H. Zhang, Y.M. Ding, and J.J. Bian, J. Mater. Sci.: Mater. Electron. 28, 12755 (2017).

    Google Scholar 

  25. R.Z. Zuo, J. Zhang, J. Song, and Y.D. Xu, J. Am. Ceram. Soc. 101, 569 (2018).

    Article  Google Scholar 

  26. B.W. Hakki and P.D. Coleman, IEEE Trans. 8, 402 (1960).

    Google Scholar 

  27. W.E. Courtney, IEEE Trans. 18, 476 (1970).

    Google Scholar 

  28. H.L. Pan, Z.B. Feng, J.X. Bi, and H.T. Wu, J. Alloys Compd. 651, 440 (2015).

    Article  Google Scholar 

  29. L.X. Li, S. Li, X.S. Lyu, H. Sun, and J. Ye, Mater. Lett. 163, 51 (2016).

    Article  Google Scholar 

  30. Y.J. Niu, M.T. Liu, M.F. Li, J.X. Bi, and H.T. Wu, J. Alloys Compd. 705, 399 (2017).

    Article  Google Scholar 

  31. B. Liu, Y.H. Huang, K.X. Song, L. Li, and X.M. Chen, J. Eur. Ceram. Soc. 38, 3833 (2018).

    Article  Google Scholar 

  32. Y.K. Yang, F.L. Liu, Y.W. Zhang, M.F. Li, F. Ling, and H.T. Wu, Ceram. Int. 44, 12238 (2018).

    Article  Google Scholar 

  33. W.S. Xia, L.Y. Zhang, Y. Wang, S.E. Jin, Y.P. Xu, Z.W. Zuo, and L.W. Shi, J. Mater. Sci.: Mater. Electron. 27, 11325 (2016).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (No. 51472108) and Project funded by China Postdoctoral Science Foundation (2017M612341). The authors are thankful for the help of Professor ZhenXing Yue and postdoctoral Jie Zhang on the measurement of microwave properties in Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. T. Wu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.K., Pan, H.L. & Wu, H.T. Sintering Characteristics and Microwave Dielectric Properties of Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6 Ceramic Doped with LiF for LTCC Applications. J. Electron. Mater. 48, 2712–2717 (2019). https://doi.org/10.1007/s11664-018-06877-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06877-x

Keywords

  • Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6
  • LiF
  • microwave dielectric ceramics
  • LTCC