First-Principles Study of Perovskite Molybdates AMoO3 (A = Ca, Sr, Ba)

Abstract

Density functional calculations have been carried out to determine various physical properties of the perovskite molybdates AMoO3 (A = Ca, Sr, and Ba) using different exchange–correlation approximations including the generalized gradient approximation (GGA), GGA with Hubbard potential (GGA + U), and GGA with spin–orbit coupling (GGA + SOC), revealing that the strong spin–orbit coupling effect in these compounds is dominant. Based on their elastic properties, these compounds are expected to be mechanically stable, anisotropic, and ductile. Their electronic band structure and density of states indicate metallic nature due to hybridization of O p- and Mo d-states, and in particular delocalization of t2g orbital. The electrical properties indicate that these compounds will exhibit significant electrical conductivity above room temperature. The ground-state energy of different magnetic phases and post-DFT calculations showed that these compounds are nonmagnetic/paramagnetic.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Radetinac, K.S. Takahashi, L. Alff, M. Kawasaki, and Y. Tokura, Appl. Phys. Express 3, 73003 (2010).

    Article  Google Scholar 

  2. 2.

    Z. Ali, I. Ahmad, I. Khan, and B. Amin, Intermetallics 31, 287 (2012).

    Article  Google Scholar 

  3. 3.

    S. Takeno, T. Ohara, K. Sano, and T. Kawakubo, Surf. Interface Anal. 35, 29 (2003).

    Article  Google Scholar 

  4. 4.

    M. Yoshino, K. Nakatsuka, H. Yukawa, and M. Morinaga, Solid State Ion. 127, 109 (2000).

    Article  Google Scholar 

  5. 5.

    Z. Fang, N. Nagaosa, K.S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, Science 302, 92 (2003).

    Article  Google Scholar 

  6. 6.

    K. Kamata, T. Nakamura, and T. Sata, Mater. Res. Bull. 10, 373 (1975).

    Article  Google Scholar 

  7. 7.

    J.B. Goodenough, J. Appl. Phys. 37, 1415 (1955).

    Article  Google Scholar 

  8. 8.

    J.B. Goodenough, J.M. Longo, Landolt-Bornstein, in New Series, Group III, Magnetic and Other Properties of Oxides and Related Compounds, vol. 4, Part A. Springer, New York (1970).

  9. 9.

    J.B. Goodenough, J.M. Longo, and J.A. Kafalas, Mater. Res. Bull. 8, 471 (1968).

    Article  Google Scholar 

  10. 10.

    W.H. McCarroll, R. Ward, and L. Katz, J. Am. Chem. Soc. 78, 2909 (1955).

    Article  Google Scholar 

  11. 11.

    K. Kamata, T. Nakamura, and T. Sata, Chem. Lett. 4, 81 (1975).

    Article  Google Scholar 

  12. 12.

    L.H. Brixner, J. Inorg. Nucl. Chem. 14, 225 (1960).

    Article  Google Scholar 

  13. 13.

    A.S. Verma, A. Kumar, and S.R. Bhardwaj, Phys. Status Solidi B 245, 1520 (2008).

    Article  Google Scholar 

  14. 14.

    A.S. Verma and V.K. Jindal, J. Alloys Compd. 485, 514 (2009).

    Article  Google Scholar 

  15. 15.

    R.L. Moreira and A. Dias, J. Phys. Chem. Solids 68, 1617 (2007).

    Article  Google Scholar 

  16. 16.

    A. Majid and Y.S. Lee, in Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, New York, USA, p. 175 (2010).

  17. 17.

    L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu, and C.H. Lee, J. Phys. Chem. Solids 67, 1531 (2006).

    Article  Google Scholar 

  18. 18.

    R. Ubic, J. Am. Ceram. Soc. 90, 3326 (2007).

    Article  Google Scholar 

  19. 19.

    J. Kubo and W. Ueda, Mater. Res. Bull. 44, 906 (2009).

    Article  Google Scholar 

  20. 20.

    M. Sahu, K. Krishnan, M. Saxena, and S. Dash, J. Nucl. Mater. 457, 29 (2015).

    Article  Google Scholar 

  21. 21.

    K. Kurosaki, T. Oyama, H. Muta, M. Uno, and S. Yamanaka, J. Alloys Compd. 372, 65 (2004).

    Article  Google Scholar 

  22. 22.

    S.A. Dar, V. Srivastava, and U.K. Sakalle, J. Electron. Mater. 46, 6870 (2017).

    Article  Google Scholar 

  23. 23.

    H. Hopper, J. Le, J. Cheng, T. Weller, R. Marschall, J. Bloh, D. Macphee, and A. Folli, J. Solid State Chem. 234, 87 (2016).

    Article  Google Scholar 

  24. 24.

    H. Mizoguchi, N. Kitamura, K. Fukumi, T. Mihara, J. Nishii, M. Nakamura, N. Kikuchi, H. Hosono, and H. Kawazoe, J. Appl. Phys. 87, 4617 (2000).

    Article  Google Scholar 

  25. 25.

    S. Zhang, Y. Sun, B. Zhao, X. Zhu, and W. Song, Phys. Status Solidi B 243, 1331 (2006).

    Article  Google Scholar 

  26. 26.

    B. Zhao, Y. Sun, S. Zhang, W. Song, and J. Dai, J. Appl. Phys. 102, 113903 (2007).

    Article  Google Scholar 

  27. 27.

    A. Daga and S. Sharma, J. Mod. Phys. 3, 1891 (2012).

    Article  Google Scholar 

  28. 28.

    Z.Z. Li, G.J. Hua, J. Yu, and H. Xing, Phys. B 407, 1990 (2012).

    Article  Google Scholar 

  29. 29.

    S.A. Dar, V. Srivastava, and U.K. Sakalle, Mater. Res. Express 4, 086304 (2017).

    Article  Google Scholar 

  30. 30.

    P.M. Woodward, J. Goldberger, M.W. Stoltzfus, H.W. Eng, R.A. Ricciardo, P.N. Santhosh, P. Karen, and A.R. Moodenbaugh, J. Am. Ceram. Soc. 91, 1796 (2008).

    Article  Google Scholar 

  31. 31.

    M.S. Park and B.I. Min, Phys. Rev. B 71, 052405 (2005).

    Article  Google Scholar 

  32. 32.

    H.H. Wang, D.F. Cui, Y.L. Zhou, Z.H. Chen, F. Chen, T. Zhao, H.B. Lu, G.Z. Yang, M.C. Xu, Y.C. Lan, X.L. Chen, H.J. Qian, and F.Q. Liu, J. Cryst. Growth 226, 261 (2001).

    Article  Google Scholar 

  33. 33.

    G.H. Bouchard and M.J. Sienko, Inorg. Chem. 7, 441 (1958).

    Article  Google Scholar 

  34. 34.

    S. Hayashi and R. Aoki, Mater. Res. Bull. 14, 409 (1979).

    Article  Google Scholar 

  35. 35.

    I. Nagai, N. Shirakawa, S.I. Ikeda, R. Iwasaki, H. Nishimura, and M. Kosaka, Appl. Phys. Lett. 87, 024105 (2005).

    Article  Google Scholar 

  36. 36.

    R. Ramesh and D.G. Schlom, MRS Bull. 33, 1006 (2008).

    Article  Google Scholar 

  37. 37.

    M.A. Subramanian, G. Aravamudan, and G.V.S. Rao, Prog. Solid State Chem. 15, 55 (1983).

    Article  Google Scholar 

  38. 38.

    W. Kohn and L.S. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  39. 39.

    O.K. Andersen, Phys. Rev. B 12, 3060 (1975).

    Article  Google Scholar 

  40. 40.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  41. 41.

    A.G. Petukhov and I.I. Mazin, Phys. Rev. B 67, 153106 (2003).

    Article  Google Scholar 

  42. 42.

    P. Novak, J. Kunes, L. Chaput, and W.E. Pickett, Phys. Status Solidi B 243, 563 (2006).

    Article  Google Scholar 

  43. 43.

    V.I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).

    Article  Google Scholar 

  44. 44.

    A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).

    Article  Google Scholar 

  45. 45.

    V.I. Anisimov, I.V. Solovyev, and M.A. Korotin, Phys. Rev. B 48, 16929 (1993).

    Article  Google Scholar 

  46. 46.

    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K (Austria: Vienna University of Technology, 2001).

    Google Scholar 

  47. 47.

    F. Birch, Phys. Rev. 71, 809 (1947).

    Article  Google Scholar 

  48. 48.

    A.A. Emery and C. Wolverton, Sci. Data 4, 170153 (2017).

    Article  Google Scholar 

  49. 49.

    S. Nazir, J. Appl. Phys. 122, 173903 (2017).

    Article  Google Scholar 

  50. 50.

    S. Tariq, M.I. Jamil, A. Sharif, S.M. Ramay, H. Ahmad, N.U. Qamar, and B. Tahir, Appl. Phys. A 124, 44 (2018).

    Article  Google Scholar 

  51. 51.

    Y. Pan, W.T. Zheng, W.M. Guan, K.H. Zhang, and X.F. Fan, J. Solid State Chem. 207, 29 (2013).

    Article  Google Scholar 

  52. 52.

    S.E. Shirsath, S.M. PaMonge, R.H. Kadam, M.L. Mane, and K.M. Jadhav, J. Mol. Struct. 1024, 77 (2012).

    Article  Google Scholar 

  53. 53.

    S.M. PaMonge, S.E. Shirsath, K.S. Lohar, S.G. Algude, S.R. Kamble, N. Kulkarni, D.R. Mane, and K.M. Jadhav, J. Magn. Magn. Mater. 325, 107 (2013).

    Article  Google Scholar 

  54. 54.

    J. Wang and S. Yip, Phys. Rev. Lett. 71, 4182 (1993).

    Article  Google Scholar 

  55. 55.

    R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952).

    Article  Google Scholar 

  56. 56.

    W. Voigt, Ann. Phys. 38, 573 (1889).

    Article  Google Scholar 

  57. 57.

    A. Reuss and Z. Angew, Math. Phys. 9, 49 (1929).

    Google Scholar 

  58. 58.

    C.H. Jenkins and S.K. Khanna, Mech. Mater., ISBN 0-12-383852-5, 62–72 (2005).

  59. 59.

    M. Fine, L. Brown, and H. Marcus, Scr. Metall. 18, 951 (1984).

    Article  Google Scholar 

  60. 60.

    E. Screiber, O. Anderson, and N. Soga, Elastic Constants and Their Measurements (New York: McGraw Hill, 1973).

    Google Scholar 

  61. 61.

    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

    Article  Google Scholar 

  62. 62.

    S.F. Pugh, Philos. Mag. A 45, 823 (1954).

    Article  Google Scholar 

  63. 63.

    H. Mizoguchi, K. Fukumi, N. Kitamura, T. Takeuchi, J. Hayakawa, H. Yamanaka, H. Yanagi, H. Hosono, and H. Kawazoe, J. Appl. Phys. 85, 6502 (1999).

    Article  Google Scholar 

  64. 64.

    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  Google Scholar 

  65. 65.

    S. Hayashi, R. Aoki, and T. Nakamura, Mater. Res. Bull. 14, 409 (1979).

    Article  Google Scholar 

  66. 66.

    S. Blundell, Magnetism in Condensed Matter (New York: Oxford University Press, 2001).

    Google Scholar 

  67. 67.

    C. Kittel, Introduction to Solid State Physics, 8th ed. (New York: Wiley, 2005).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zahid Ali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Somia, Mehmood, S., Ali, Z. et al. First-Principles Study of Perovskite Molybdates AMoO3 (A = Ca, Sr, Ba). Journal of Elec Materi 48, 1730–1739 (2019). https://doi.org/10.1007/s11664-018-06870-4

Download citation

Keywords

  • Oxides
  • ab initio calculations
  • mechanical properties
  • electronic structures
  • magnetic properties